These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 3837036)
1. A comparison of quantitative ultrastructural and contractile characteristics of muscle fibre types of the perch, Perca fluviatilis L. Akster HA; Granzier HL; ter Keurs HE J Comp Physiol B; 1985; 155(6):685-91. PubMed ID: 3837036 [TBL] [Abstract][Full Text] [Related]
2. Morphometry of muscle fibre types in the carp (Cyprinus carpio L.). Relationships between structural and contractile characteristics. Akster HA Cell Tissue Res; 1985; 241(1):193-201. PubMed ID: 4028116 [TBL] [Abstract][Full Text] [Related]
3. Ultrastructure of muscle fibres in head and axial muscles of the perch (Perca fluviatilis L.). A quantitative study. Akster HA Cell Tissue Res; 1981; 219(1):111-31. PubMed ID: 7285089 [TBL] [Abstract][Full Text] [Related]
4. Electrophoretic comparison of the proteins of some perch (Perca fluviatilis L.) head muscles. Focant B; Jacob MF; Huriaux F J Muscle Res Cell Motil; 1981 Sep; 2(3):295-305. PubMed ID: 7287899 [TBL] [Abstract][Full Text] [Related]
5. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat. Cairns SP; Dulhunty AF Br J Pharmacol; 1993 Nov; 110(3):1133-41. PubMed ID: 8298802 [TBL] [Abstract][Full Text] [Related]
6. Contractile properties of single skinned fibres from the extraocular muscles, the levator and superior rectus, of the rabbit. Lynch GS; Frueh BR; Williams DA J Physiol; 1994 Mar; 475(2):337-46. PubMed ID: 8021839 [TBL] [Abstract][Full Text] [Related]
7. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects. Radzyukevich T; Lipská E; Pavelková J; Zacharová D Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694 [TBL] [Abstract][Full Text] [Related]
8. Motor units and immunohistochemistry of cat soleus muscle after long periods of cross-reinnervation. Lewis DM; Rowlerson A; Webb SN J Physiol; 1982 Apr; 325():403-18. PubMed ID: 6213765 [TBL] [Abstract][Full Text] [Related]
9. Effects of 2,3-butanedione monoxime on the contractile activation properties of fast- and slow-twitch rat muscle fibres. Fryer MW; Neering IR; Stephenson DG J Physiol; 1988 Dec; 407():53-75. PubMed ID: 3256625 [TBL] [Abstract][Full Text] [Related]
10. Slow-to-fast transformation of denervated soleus muscles by chronic high-frequency stimulation in the rat. Gorza L; Gundersen K; Lømo T; Schiaffino S; Westgaard RH J Physiol; 1988 Aug; 402():627-49. PubMed ID: 3236251 [TBL] [Abstract][Full Text] [Related]
11. Effects of tension and stiffness due to reduced pH in mammalian fast- and slow-twitch skinned skeletal muscle fibres. Metzger JM; Moss RL J Physiol; 1990 Sep; 428():737-50. PubMed ID: 2231431 [TBL] [Abstract][Full Text] [Related]
12. Force-velocity relation in deuterium oxide-treated frog single muscle fibres during the rise of tension in an isometric tetanus. Cecchi G; Colomo F; Lombardi V J Physiol; 1981 Aug; 317():207-21. PubMed ID: 6273545 [TBL] [Abstract][Full Text] [Related]
13. The effects of ramp stretches on active contractions in intact mammalian fast and slow muscle fibres. Mutungi G; Ranatunga KW J Muscle Res Cell Motil; 2001; 22(2):175-84. PubMed ID: 11519740 [TBL] [Abstract][Full Text] [Related]
14. The variation of characteristics of twitch and tetanic contractions with sarcomere length in isolated muscle fibres of the frog. Cecchi G; Colomo F; Lombardi V Arch Fisiol; 1979 Jun; 71(1-4):279-302. PubMed ID: 318017 [TBL] [Abstract][Full Text] [Related]
15. [Fiber-type morphology and function of the triads in frog (Rana esculenta) skeletal muscle)]. Dauber W Z Mikrosk Anat Forsch; 1979; 93(3):512-36. PubMed ID: 316237 [TBL] [Abstract][Full Text] [Related]
16. Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slow-twitch rat muscle fibres. Larsson L; Salviati G J Physiol; 1989 Dec; 419():253-64. PubMed ID: 2621631 [TBL] [Abstract][Full Text] [Related]
17. Twitch contractile adaptations are not dependent on the intensity of isometric exercise in the human triceps surae. Alway SE; Sale DG; MacDougall JD Eur J Appl Physiol Occup Physiol; 1990; 60(5):346-52. PubMed ID: 2369907 [TBL] [Abstract][Full Text] [Related]
18. Some properties of the contractile system and sarcoplasmic reticulum of skinned slow fibres from Xenopus muscle. Horiuti K J Physiol; 1986 Apr; 373():1-23. PubMed ID: 2427691 [TBL] [Abstract][Full Text] [Related]
19. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH; Lamb GD Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [TBL] [Abstract][Full Text] [Related]
20. Temperature effects on isometric contractions of slow and fast twitch muscles of various rodents--dependence on fibre type composition: a comparative study. Asmussen G; Gaunitz U Biomed Biochim Acta; 1989; 48(5-6):S536-41. PubMed ID: 2757627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]