These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38370432)

  • 21. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks.
    Yan J; Yu K; Chen R; Chen L
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28556788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Capturing Upper Body Kinematics and Localization with Low-Cost Sensors for Rehabilitation Applications.
    Sarker A; Emenonye DR; Kelliher A; Rikakis T; Buehrer RM; Asbeck AT
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RSS-Based Target Localization in Underwater Acoustic Sensor Networks via Convex Relaxation.
    Chang S; Li Y; He Y; Wu Y
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compressive Sensing Based Radio Tomographic Imaging with Spatial Diversity.
    Xu S; Liu H; Gao F; Wang Z
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System.
    Guzmán-Quirós R; Martínez-Sala A; Gómez-Tornero JL; García-Haro J
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26703620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance Evaluation of Localization Accuracy for a Log-Normal Shadow Fading Wireless Sensor Network under Physical Barrier Attacks.
    Hussein AA; Rahman TA; Leow CY
    Sensors (Basel); 2015 Dec; 15(12):30545-70. PubMed ID: 26690159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-Phase Robust Target Localization in Ocean Sensor Networks Using Received Signal Strength Measurements.
    Zhang Y; Wu H; Mei X; Xian J; Wang W; Zhang Q; Liang L
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33801429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wireless Capsule Gastrointestinal Endoscopy: Direction-of-Arrival Estimation Based Localization Survey.
    Dey N; Ashour AS; Shi F; Sherratt RS
    IEEE Rev Biomed Eng; 2017; 10():2-11. PubMed ID: 28459696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wireless Fingerprinting Uncertainty Prediction Based on Machine Learning.
    Li Y; Gao Z; He Z; Zhuang Y; Radi A; Chen R; El-Sheimy N
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30650595
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collaborative localization in wireless sensor networks via pattern recognition in radio irregularity using omnidirectional antennas.
    Jiang JA; Chuang CL; Lin TS; Chen CP; Hung CH; Wang JY; Liu CW; Lai TY
    Sensors (Basel); 2010; 10(1):400-27. PubMed ID: 22315548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Robust Crowdsourcing-Based Indoor Localization System.
    Zhou B; Li Q; Mao Q; Tu W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Optimal Multi-Channel Trilateration Localization Algorithm by Radio-Multipath Multi-Objective Evolution in RSS-Ranging-Based Wireless Sensor Networks.
    Fang X; Chen L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bayesian-based localization of wireless capsule endoscope using received signal strength.
    Nadimi ES; Blanes-Vidal V; Tarokh V; Johansen PM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5988-91. PubMed ID: 25571361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Correction method for wireless electromagnetic localization of microcapsule devices.
    Guo X; Yan R; Wang C
    Int J Med Robot; 2013 Jun; 9(2):204-12. PubMed ID: 23348887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RSS-Based Localization and Mobility Evaluation Using a Single NB-IoT Cell.
    Janssen T; Berkvens R; Weyn M
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive Environmental Source Localization and Tracking with Unknown Permittivity and Path Loss Coefficients.
    Fidan B; Umay I
    Sensors (Basel); 2015 Dec; 15(12):31125-41. PubMed ID: 26690441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research on Visualized Traceability Supervision System of Medical Equipment Based on Wireless Local Area Network Real-time Positioning System].
    Zhang J; Zhou H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2021 Sep; 45(5):487-491. PubMed ID: 34628758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Target Localization in Wireless Sensor Networks Based on Received Signal Strength and Convex Relaxation.
    Ding W; Zhong Q; Wang Y; Guan C; Fang B
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MobileRF: A Robust Device-Free Tracking System Based On a Hybrid Neural Network HMM Classifier.
    Paul AS; Wan EA; Adenwala F; Schafermeyer E; Preiser N; Kaye J; Jacobs PG
    Proc ACM Int Conf Ubiquitous Comput; 2014; 2014():159-170. PubMed ID: 25544964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PRIMAL: Page Rank-Based Indoor Mapping and Localization Using Gene-Sequenced Unlabeled WLAN Received Signal Strength.
    Zhou M; Zhang Q; Xu K; Tian Z; Wang Y; He W
    Sensors (Basel); 2015 Sep; 15(10):24791-817. PubMed ID: 26404274
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.