These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38370745)

  • 1. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species.
    Daigle A; Johri P
    bioRxiv; 2024 May; ():. PubMed ID: 38370745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations.
    Arunkumar R; Ness RW; Wright SI; Barrett SC
    Genetics; 2015 Mar; 199(3):817-29. PubMed ID: 25552275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of mutational effects on fitness in Caenorhabditis elegans inferred from standing genetic variation.
    Gilbert KJ; Zdraljevic S; Cook DE; Cutter AD; Andersen EC; Baer CF
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34791202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The efficacy of selection may increase or decrease with selfing depending upon the recombination environment.
    Sianta SA; Peischl S; Moeller DA; Brandvain Y
    Evolution; 2023 Feb; 77(2):394-408. PubMed ID: 36622723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selfing, adaptation and background selection in finite populations.
    Kamran-Disfani A; Agrawal AF
    J Evol Biol; 2014 Jul; 27(7):1360-71. PubMed ID: 24601989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies.
    Keightley PD; Eyre-Walker A
    Genetics; 2007 Dec; 177(4):2251-61. PubMed ID: 18073430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of recombination in self-fertilizing organisms.
    Stetsenko R; Roze D
    Genetics; 2022 Aug; 222(1):. PubMed ID: 35929790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of non-neutral synonymous mutations when inferring selection on non-synonymous mutations.
    Zurita AMI; Kyriazis CC; Lohmueller KE
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of Distribution of Fitness Effects and Proportion of Adaptive Substitutions from Polymorphism Data.
    Tataru P; Mollion M; Glémin S; Bataillon T
    Genetics; 2017 Nov; 207(3):1103-1119. PubMed ID: 28951530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of the Distribution of Selection Coefficients for New Nonsynonymous Mutations Using Large Samples.
    Kim BY; Huber CD; Lohmueller KE
    Genetics; 2017 May; 206(1):345-361. PubMed ID: 28249985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation.
    McVean GA; Charlesworth B
    Genetics; 2000 Jun; 155(2):929-44. PubMed ID: 10835411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Background Selection in Partially Selfing Populations.
    Roze D
    Genetics; 2016 Jun; 203(2):937-57. PubMed ID: 27075726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the Full Distribution of Fitness Effects of New Amino Acid Mutations Across Great Apes.
    Castellano D; Macià MC; Tataru P; Bataillon T; Munch K
    Genetics; 2019 Nov; 213(3):953-966. PubMed ID: 31488516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of purifying and background selection on the inference of population history: problems and prospects.
    Johri P; Riall K; Becher H; Excoffier L; Charlesworth B; Jensen JD
    bioRxiv; 2021 Jan; ():. PubMed ID: 33501439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of the distribution of fitness effects of mutations is affected by single nucleotide polymorphism filtering methods, sample size and population structure.
    Andersson BA; Zhao W; Haller BC; Brännström Å; Wang XR
    Mol Ecol Resour; 2023 Oct; 23(7):1589-1603. PubMed ID: 37340611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hitchhiking of deleterious alleles and the cost of adaptation in partially selfing species.
    Hartfield M; Glémin S
    Genetics; 2014 Jan; 196(1):281-93. PubMed ID: 24240529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.
    Whitlock AO; Peck KM; Azevedo RB; Burch CL
    Genetics; 2016 Jun; 203(2):923-36. PubMed ID: 27098911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of deleterious mutations on evolution at linked sites.
    Charlesworth B
    Genetics; 2012 Jan; 190(1):5-22. PubMed ID: 22219506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative linkage disequilibrium between amino acid changing variants reveals interference among deleterious mutations in the human genome.
    Garcia JA; Lohmueller KE
    PLoS Genet; 2021 Jul; 17(7):e1009676. PubMed ID: 34319975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of deleterious mutations on neutral molecular variation.
    Charlesworth B; Morgan MT; Charlesworth D
    Genetics; 1993 Aug; 134(4):1289-303. PubMed ID: 8375663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.