These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3837102)

  • 1. Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor.
    Zeil J; Sandeman R; Sandeman D
    J Comp Physiol A; 1985 Nov; 157(5):607-17. PubMed ID: 3837102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration in a T-maze by the crayfish Cherax destructor suggests bilateral comparison of antennal tactile information.
    McMahon A; Patullo BW; Macmillan DL
    Biol Bull; 2005 Jun; 208(3):183-8. PubMed ID: 15965123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active tactile sensing for localization of objects by the cockroach antenna.
    Okada J; Toh Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jul; 192(7):715-26. PubMed ID: 16450116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring with damaged antennae: do crayfish compensate for injuries?
    Koch LM; Patullo BW; Macmillan DL
    J Exp Biol; 2006 Aug; 209(Pt 16):3226-33. PubMed ID: 16888070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bilateral and unilateral antennal lesions alter orientation abilities of the crayfish, Orconectes rusticus.
    Kraus-Epley KE; Moore PA
    Chem Senses; 2002 Jan; 27(1):49-55. PubMed ID: 11751468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functions of antennal mechanoreceptors and antennal joints in tactile discrimination of the honeybee (Apis mellifera L.).
    Scheiner R; Schnitt S; Erber J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Sep; 191(9):857-64. PubMed ID: 16044330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical and physiological properties of the crayfish antennal flagellum.
    Taylor RC
    J Neurobiol; 1975 Sep; 6(5):501-19. PubMed ID: 1176982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corners and bubble wrap: the structure and texture of surfaces influence crayfish exploratory behaviour.
    Patullo BW; Macmillan DL
    J Exp Biol; 2006 Feb; 209(Pt 3):567-75. PubMed ID: 16424107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration in the crayfish antennal neuropile: topographic representation and multiple-channel coding of mechanoreceptive submodalities.
    Taylor RC
    J Neurobiol; 1975 Sep; 6(5):475-99. PubMed ID: 1176981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of antennal hair plates in object-guided tactile orientation of the cockroach (Periplaneta americana).
    Okada J; Toh Y
    J Comp Physiol A; 2000 Sep; 186(9):849-57. PubMed ID: 11085638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanosensory control of antennal movement by the scapal hair plate in the American cockroach.
    Okada J; Kanamaru Y; Toh Y
    Zoolog Sci; 2002 Nov; 19(11):1201-10. PubMed ID: 12499662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-frequency steering maneuvers mediated by tactile cues: antennal wall-following in the cockroach.
    Camhi JM; Johnson EN
    J Exp Biol; 1999 Mar; 202(Pt 5):631-43. PubMed ID: 9929464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative ultrastructure of the antennae and sensory hairs in six species of crayfish.
    Kor G; Mengal K; Buřič M; Kozák P; Niksirat H
    PeerJ; 2023; 11():e15006. PubMed ID: 36908819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual, multilayered somatosensory maps formed by antennal tactile and contact chemosensory afferents in an insect brain.
    Nishino H; Nishikawa M; Yokohari F; Mizunami M
    J Comp Neurol; 2005 Dec; 493(2):291-308. PubMed ID: 16255033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active and passive antennal movements during visually guided steering in flying Drosophila.
    Mamiya A; Straw AD; Tómasson E; Dickinson MH
    J Neurosci; 2011 May; 31(18):6900-14. PubMed ID: 21543620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response.
    Ye S; Leung V; Khan A; Baba Y; Comer CM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):89-96. PubMed ID: 12607037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The antennal system and cockroach evasive behavior. II. Stimulus identification and localization are separable antennal functions.
    Comer CM; Parks L; Halvorsen MB; Breese-Terteling A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):97-103. PubMed ID: 12607038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Computational Model of a Descending Mechanosensory Pathway Involved in Active Tactile Sensing.
    Ache JM; Dürr V
    PLoS Comput Biol; 2015 Jul; 11(7):e1004263. PubMed ID: 26158851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A direct descending pathway informing locomotor networks about tactile sensor movement.
    Ache JM; Haupt SS; Dürr V
    J Neurosci; 2015 Mar; 35(9):4081-91. PubMed ID: 25740535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanosensory-motor apparatus of antennae in the Oleander hawk moth (Daphnis nerii, Lepidoptera).
    Sant HH; Sane SP
    J Comp Neurol; 2018 Oct; 526(14):2215-2230. PubMed ID: 29907958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.