These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 3837110)
1. Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the 'snapping-evoking area' in the optic tectum. Satou M; Matsushima T; Takeuchi H; Ueda K J Comp Physiol A; 1985 Dec; 157(6):717-37. PubMed ID: 3837110 [TBL] [Abstract][Full Text] [Related]
2. Tongue-muscle-controlling motoneurons in the Japanese toad: neural inputs from the thalamus. Satou M; Takeuchi H; Ueda K Brain Res; 1989 Feb; 481(1):39-46. PubMed ID: 2706465 [TBL] [Abstract][Full Text] [Related]
3. Neuronal pathways for the lingual reflex in the Japanese toad. Matsushima T; Satou M; Ueda K J Comp Physiol A; 1988 Dec; 164(2):173-93. PubMed ID: 3244127 [TBL] [Abstract][Full Text] [Related]
4. Glossopharyngeal and tectal influences on tongue-muscle motoneurons in the Japanese toad. Matsushima TA; Satou M; Ueda K Brain Res; 1986 Feb; 365(1):198-203. PubMed ID: 3947984 [TBL] [Abstract][Full Text] [Related]
5. [Postsynaptic potentials of motor neurons in the nucleus of the hypoglossal nerve in cats, evoked by rubrofugal impulses]. Gura EV; Limanskiĭ IuP; Chesnokov VV Neirofiziologiia; 1978; 10(1):62-6. PubMed ID: 628472 [TBL] [Abstract][Full Text] [Related]
6. Synaptic organization of tectal-facial pathways in cat. II. Synaptic potentials following midbrain tegmentum stimulation. May PJ; Vidal PP; Baker R J Neurophysiol; 1990 Aug; 64(2):381-402. PubMed ID: 1698936 [TBL] [Abstract][Full Text] [Related]
7. Synaptic organization of the tectal-facial pathways in the cat. I. Synaptic potentials following collicular stimulation. Vidal PP; May PJ; Baker R J Neurophysiol; 1988 Aug; 60(2):769-97. PubMed ID: 3171650 [TBL] [Abstract][Full Text] [Related]
8. Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Uemura M; Matsuda K; Kume M; Takeuchi Y; Matsushima R; Mizuno N Neurosci Lett; 1979 Jul; 13(2):99-104. PubMed ID: 530473 [TBL] [Abstract][Full Text] [Related]
9. The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo L. Satou M; Ewert JP J Comp Physiol A; 1985 Dec; 157(6):739-48. PubMed ID: 3939244 [TBL] [Abstract][Full Text] [Related]
10. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. Altschuler SM; Bao X; Miselis RR J Comp Neurol; 1994 Apr; 342(4):538-50. PubMed ID: 8040364 [TBL] [Abstract][Full Text] [Related]
11. Medullary reticular neurons in the Japanese toad: morphologies and excitatory inputs from the optic tectum. Matsushima T; Satou M; Ueda K J Comp Physiol A; 1989 Nov; 166(1):7-22. PubMed ID: 2600886 [TBL] [Abstract][Full Text] [Related]
12. Cobaltic lysine study of the morphology and distribution of the cranial nerve efferent neurons (motoneurons and preganglionic parasympathetic neurons) and rostral spinal motoneurons in the Japanese toad. Oka Y; Takeuchi H; Satou M; Ueda K J Comp Neurol; 1987 May; 259(3):400-23. PubMed ID: 3584564 [TBL] [Abstract][Full Text] [Related]
13. Jaw-tongue reflex: afferents, central pathways, and synaptic potentials in hypoglossal motoneurons in the cat. Ishiwata Y; Ono T; Kuroda T; Nakamura Y J Dent Res; 2000 Aug; 79(8):1626-34. PubMed ID: 11023286 [TBL] [Abstract][Full Text] [Related]
14. Axonal projections and synapses from the supratrigeminal region to hypoglossal motoneurons in the rat. Luo P; Dessem D; Zhang J Brain Res; 2001 Feb; 890(2):314-29. PubMed ID: 11164798 [TBL] [Abstract][Full Text] [Related]
15. Excitatory termination of abducens internuclear neurons on medial rectus motoneurons: relationship to syndrome of internuclear ophthalmoplegia. Highstein SM; Baker R J Neurophysiol; 1978 Nov; 41(6):1647-61. PubMed ID: 731294 [TBL] [Abstract][Full Text] [Related]
16. Diverse physiological properties of hypoglossal motoneurons innervating intrinsic and extrinsic tongue muscles. Wealing JC; Cholanian M; Flanigan EG; Levine RB; Fregosi RF J Neurophysiol; 2019 Nov; 122(5):2054-2060. PubMed ID: 31533009 [TBL] [Abstract][Full Text] [Related]
17. Neural substrate for motor control of feeding in amphibians. Dicke U; Roth G; Matsushima T Acta Anat (Basel); 1998; 163(3):127-43. PubMed ID: 9973634 [TBL] [Abstract][Full Text] [Related]
18. Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue. Kecskes S; Matesz C; Gaál B; Birinyi A Brain Struct Funct; 2016 Apr; 221(3):1533-53. PubMed ID: 25575900 [TBL] [Abstract][Full Text] [Related]
19. Oxytocin mediated excitation of hypoglossal motoneurons: implications for treating obstructive sleep apnea. Dergacheva O; Polotsky VY; Mendelowitz D Sleep; 2023 Apr; 46(4):. PubMed ID: 36846973 [TBL] [Abstract][Full Text] [Related]
20. Organization of last-order premotor interneurons related to the protraction of tongue in the frog, Rana esculenta. Rácz E; Bácskai T; Szabo G; Székely G; Matesz C Brain Res; 2008 Jan; 1187():111-5. PubMed ID: 18036575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]