These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 38371262)
1. One-year results for myopia control of orthokeratology with different back optic zone diameters: a randomized trial using a novel multispectral-based topographer. Tang WT; Luo XN; Zhao WJ; Liao J; Xu XY; Zhang HD; Zhang L Int J Ophthalmol; 2024; 17(2):324-330. PubMed ID: 38371262 [TBL] [Abstract][Full Text] [Related]
2. Relative peripheral refraction in myopic children wearing orthokeratology lenses using a novel multispectral refraction topographer. Li T; Chen Z; She M; Zhou X Clin Exp Optom; 2023 Sep; 106(7):746-751. PubMed ID: 36126304 [TBL] [Abstract][Full Text] [Related]
3. The effect of back optic zone diameter on relative corneal refractive power distribution and corneal higher-order aberrations in orthokeratology. Li N; Lin W; Zhang K; Li B; Su Q; Du B; Wei R Cont Lens Anterior Eye; 2023 Feb; 46(1):101755. PubMed ID: 36088210 [TBL] [Abstract][Full Text] [Related]
4. Altering optical zone diameter, reverse curve width, and compression factor: impacts on visual performance and axial elongation in orthokeratology. Wu J; Zhang X; Wang L; Zhang P; Guo X; Xie P Cont Lens Anterior Eye; 2024 Jun; 47(3):102136. PubMed ID: 38503665 [TBL] [Abstract][Full Text] [Related]
5. One-year results of the Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study: a prospective randomised clinical trial. Guo B; Cheung SW; Kojima R; Cho P Ophthalmic Physiol Opt; 2021 Jul; 41(4):702-714. PubMed ID: 33991112 [TBL] [Abstract][Full Text] [Related]
6. Anisomyopia and orthokeratology for myopia control - Axial elongation and relative peripheral refraction. Wang J; Cheung SW; Bian S; Wang X; Liu L; Cho P Ophthalmic Physiol Opt; 2024 Sep; 44(6):1261-1269. PubMed ID: 38989808 [TBL] [Abstract][Full Text] [Related]
7. Impact of back optic zone diameter (BOZD) in orthokeratology on axial length elongation: A meta-analysis and systematic review. Gu Z; Yang R; Wang C; Luo M; Chen X; Piao H; Liao X Cont Lens Anterior Eye; 2024 Oct; ():102316. PubMed ID: 39414492 [TBL] [Abstract][Full Text] [Related]
8. [Correlation between the increase in corneal higher-order aberrations and the control of children's myopic anisometropia after wearing orthokeratology lenses]. Sun XX; Zhang Y; Chen YG Zhonghua Yan Ke Za Zhi; 2022 Apr; 58(4):250-258. PubMed ID: 35391511 [No Abstract] [Full Text] [Related]
9. The effect of the back optic zone diameter on the treatment zone area and axial elongation in orthokeratology. Ding W; Jiang D; Tian Y; Lu W; Shi L; Ji R; Zhao C; Leng L Cont Lens Anterior Eye; 2024 Apr; 47(2):102131. PubMed ID: 38403480 [TBL] [Abstract][Full Text] [Related]
10. Myopia Control Effect Is Influenced by Baseline Relative Peripheral Refraction in Children Wearing Defocus Incorporated Multiple Segments (DIMS) Spectacle Lenses. Zhang H; Lam CSY; Tang WC; Leung M; Qi H; Lee PH; To CH J Clin Med; 2022 Apr; 11(9):. PubMed ID: 35566423 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of small back optic zone design on myopia control for corneal refractive therapy (CRT): a one-year prospective cohort study. Li X; Zuo L; Zhao H; Hu J; Tang T; Wang K; Li Y; Zhao M Eye Vis (Lond); 2023 Nov; 10(1):47. PubMed ID: 37986014 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two different orthokeratology lenses and defocus incorporated soft contact (DISC) lens in controlling myopia progression. Li N; Lin W; Liang R; Sun Z; Du B; Wei R Eye Vis (Lond); 2023 Oct; 10(1):43. PubMed ID: 37805535 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of orthokeratology lens with the modified small treatment zone on myopia progression and visual quality: a randomized clinical trial. Gong G; Zhang BN; Guo T; Liu G; Zhang J; Zhang XJ; Du X Eye Vis (Lond); 2024 Sep; 11(1):35. PubMed ID: 39218909 [TBL] [Abstract][Full Text] [Related]
14. Influence of back optic zone diameter on corneal morphology with orthokeratology lenses. Li H; Zeng L; Chen C; Zhou J Cont Lens Anterior Eye; 2024 May; ():102178. PubMed ID: 38724427 [TBL] [Abstract][Full Text] [Related]
15. Optical changes and association with axial elongation in children wearing orthokeratology lenses of different back optic zone diameter. Guo B; Cho P; Cheung SW; Kojima R; Vincent S Eye Vis (Lond); 2023 Jul; 10(1):25. PubMed ID: 37391828 [TBL] [Abstract][Full Text] [Related]
16. Relative peripheral refraction in school children with different refractive errors using a novel multispectral refraction topographer. Hu HL; Li SZ; Feng AY; Zhong HX; Mu JF; Liu MZ Int J Ophthalmol; 2024; 17(8):1477-1482. PubMed ID: 39156781 [TBL] [Abstract][Full Text] [Related]
17. Orthokeratology combined with spectacles in moderate to high myopia adolescents. Wang F; Wu G; Xu X; Wu H; Peng Y; Lin Y; Jiang J Cont Lens Anterior Eye; 2024 Feb; 47(1):102088. PubMed ID: 37977905 [TBL] [Abstract][Full Text] [Related]
18. The effects of base curve aspheric orthokeratology lenses on corneal topography and peripheral refraction: A randomized prospective trial. Liu T; Ma W; Wang J; Yang B; Dong G; Chen C; Wang X; Liu L Cont Lens Anterior Eye; 2023 Jun; 46(3):101814. PubMed ID: 36681621 [TBL] [Abstract][Full Text] [Related]
20. The Role of Back Optic Zone Diameter in Myopia Control with Orthokeratology Lenses. Pauné J; Fonts S; Rodríguez L; Queirós A J Clin Med; 2021 Jan; 10(2):. PubMed ID: 33477514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]