These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
541 related articles for article (PubMed ID: 38371524)
1. Identification of novel biomarkers and immune infiltration characteristics of ischemic stroke based on comprehensive bioinformatic analysis and machine learning. Hu S; Cai J; Chen S; Wang Y; Ren L Biochem Biophys Rep; 2024 Mar; 37():101595. PubMed ID: 38371524 [TBL] [Abstract][Full Text] [Related]
2. Discovery and validation of molecular patterns and immune characteristics in the peripheral blood of ischemic stroke patients. Cong L; He Y; Wu Y; Li Z; Ding S; Liang W; Xiao X; Zhang H; Wang L PeerJ; 2024; 12():e17208. PubMed ID: 38650649 [TBL] [Abstract][Full Text] [Related]
3. Identification of immune-related genes in diagnosing retinopathy of prematurity with sepsis through bioinformatics analysis and machine learning. Chen H; Chen E; Lu Y; Xu Y Front Genet; 2023; 14():1264873. PubMed ID: 38028617 [No Abstract] [Full Text] [Related]
4. Identification of immune-related key genes in the peripheral blood of ischaemic stroke patients using a weighted gene coexpression network analysis and machine learning. Zheng PF; Chen LZ; Liu P; Pan HW; Fan WJ; Liu ZY J Transl Med; 2022 Aug; 20(1):361. PubMed ID: 35962388 [TBL] [Abstract][Full Text] [Related]
5. Bioinformatics analysis of the immune cell infiltration characteristics and correlation with crucial diagnostic markers in pulmonary arterial hypertension. Lian G; You J; Lin W; Gao G; Xu C; Wang H; Luo L BMC Pulm Med; 2023 Aug; 23(1):300. PubMed ID: 37582718 [TBL] [Abstract][Full Text] [Related]
6. Identifying potential biomarkers of idiopathic pulmonary fibrosis through machine learning analysis. Wu Z; Chen H; Ke S; Mo L; Qiu M; Zhu G; Zhu W; Liu L Sci Rep; 2023 Oct; 13(1):16559. PubMed ID: 37783761 [TBL] [Abstract][Full Text] [Related]
7. Identification of TYR, TYRP1, DCT and LARP7 as related biomarkers and immune infiltration characteristics of vitiligo via comprehensive strategies. Zhang J; Yu R; Guo X; Zou Y; Chen S; Zhou K; Chen Y; Li Y; Gao S; Wu Y Bioengineered; 2021 Dec; 12(1):2214-2227. PubMed ID: 34107850 [TBL] [Abstract][Full Text] [Related]
8. New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation. Li Y; Yu J; Li R; Zhou H; Chang X Cell Mol Biol Lett; 2024 Jan; 29(1):21. PubMed ID: 38291374 [TBL] [Abstract][Full Text] [Related]
9. Identification and validation of novel biomarkers associated with immune infiltration for the diagnosis of osteosarcoma based on machine learning. Ji Y; Lin Z; Li G; Tian X; Wu Y; Wan J; Liu T; Xu M Front Genet; 2023; 14():1136783. PubMed ID: 37732314 [No Abstract] [Full Text] [Related]
10. Identification of hub genes and their correlation with immune infiltration in coronary artery disease through bioinformatics and machine learning methods. Huang KK; Zheng HL; Li S; Zeng ZY J Thorac Dis; 2022 Jul; 14(7):2621-2634. PubMed ID: 35928610 [TBL] [Abstract][Full Text] [Related]
11. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Liu C; Zhou Y; Zhou Y; Tang X; Tang L; Wang J Comput Biol Med; 2023 Jan; 152():106388. PubMed ID: 36470144 [TBL] [Abstract][Full Text] [Related]
12. Identification of potential biomarkers and immune-related pathways related to immune infiltration in patients with acute myocardial infarction. Lin Z; Xu H; Chen Y; Zhang X; Yang J Transpl Immunol; 2022 Oct; 74():101652. PubMed ID: 35764238 [TBL] [Abstract][Full Text] [Related]
13. Machine learning algorithms assisted identification of post-stroke depression associated biological features. Zhang X; Wang X; Wang S; Zhang Y; Wang Z; Yang Q; Wang S; Cao R; Yu B; Zheng Y; Dang Y Front Neurosci; 2023; 17():1146620. PubMed ID: 36968495 [TBL] [Abstract][Full Text] [Related]
14. Machine learning and weighted gene co-expression network analysis identify a three-gene signature to diagnose rheumatoid arthritis. Wu YK; Liu CD; Liu C; Wu J; Xie ZG Front Immunol; 2024; 15():1387311. PubMed ID: 38711508 [TBL] [Abstract][Full Text] [Related]
15. Identification of diagnostic signatures associated with immune infiltration in Alzheimer's disease by integrating bioinformatic analysis and machine-learning strategies. Tian Y; Lu Y; Cao Y; Dang C; Wang N; Tian K; Luo Q; Guo E; Luo S; Wang L; Li Q Front Aging Neurosci; 2022; 14():919614. PubMed ID: 35966794 [TBL] [Abstract][Full Text] [Related]
16. Dysregulation and imbalance of innate and adaptive immunity are involved in the cardiomyopathy progression. He B; Quan LP; Cai CY; Yu DY; Yan W; Wei QJ; Zhang Z; Huang XN; Liu L Front Cardiovasc Med; 2022; 9():973279. PubMed ID: 36148059 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatics analysis identifies diagnostic biomarkers and their correlation with immune infiltration in diabetic nephropathy. Huang M; Zhu Z; Nong C; Liang Z; Ma J; Li G Ann Transl Med; 2022 Jun; 10(12):669. PubMed ID: 35845512 [TBL] [Abstract][Full Text] [Related]
18. Exploration of the shared diagnostic genes and mechanisms between periodontitis and primary Sjögren's syndrome by integrated comprehensive bioinformatics analysis and machine learning. Wang S; Wang Q; Zhao K; Zhang S; Chen Z Int Immunopharmacol; 2024 Aug; 141():112899. PubMed ID: 39142001 [TBL] [Abstract][Full Text] [Related]
19. Six potential biomarkers in septic shock: a deep bioinformatics and prospective observational study. Kong C; Zhu Y; Xie X; Wu J; Qian M Front Immunol; 2023; 14():1184700. PubMed ID: 37359526 [TBL] [Abstract][Full Text] [Related]
20. Bioinformatic analysis of hub markers and immune cell infiltration characteristics of gastric cancer. Li C; Yang T; Yuan Y; Wen R; Yu H Front Immunol; 2023; 14():1202529. PubMed ID: 37359529 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]