BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 3837174)

  • 1. Vasomotion and transvascular exchange of fluid and plasma proteins.
    Papenfuss HD; Gross JF
    Microcirc Endothelium Lymphatics; 1985; 2(6):577-96. PubMed ID: 3837174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of the gradient of vascular permeability on fluid and plasma protein exchange in the mesenteric microcirculation.
    Papenfuss HD; Hauck G
    Int J Microcirc Clin Exp; 1987 Aug; 6(3):203-13. PubMed ID: 3654065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transvascular exchange of fluid and plasma proteins.
    Papenfuss HD; Gross JF
    Biorheology; 1987; 24(3):319-35. PubMed ID: 3663893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity.
    Netti PA; Roberge S; Boucher Y; Baxter LT; Jain RK
    Microvasc Res; 1996 Jul; 52(1):27-46. PubMed ID: 8812751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasomotion and blood flow regulation in hamster skeletal muscle microcirculation: A theoretical and experimental study.
    Ursino M; Colantuoni A; Bertuglia S
    Microvasc Res; 1998 Nov; 56(3):233-52. PubMed ID: 9828162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular fluid exchange and the revised Starling principle.
    Levick JR; Michel CC
    Cardiovasc Res; 2010 Jul; 87(2):198-210. PubMed ID: 20200043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longchain n-3 polyunsaturated fatty acids and microvascular reactivity: observation in the hamster cheek pouch.
    Conde CM; Cyrino FZ; Bottino DA; Gardette J; Bouskela E
    Microvasc Res; 2007 May; 73(3):237-47. PubMed ID: 17196224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the arteriolar myogenic response by transvascular fluid filtration.
    Kim MH; Harris NR; Korzick DH; Tarbell JM
    Microvasc Res; 2004 Jul; 68(1):30-7. PubMed ID: 15219418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arteriolar to venular red cell and plasma dispersion in hemorrhage- and endotoxin-shocked cats.
    Baker CH
    Adv Shock Res; 1982; 8():35-51. PubMed ID: 7136947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational fluid dynamic studies of leukocyte adhesion effects on non-Newtonian blood flow through microvessels.
    Das B; Johnson PC; Popel AS
    Biorheology; 2000; 37(3):239-58. PubMed ID: 11026943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Significance of hemodynamics and hemorheology in microcirculation disorders].
    Ernst FD
    Z Gesamte Inn Med; 1986 Feb; 41(3):63-8. PubMed ID: 3962391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional cutaneous microvascular flow responses during gravitational and LBNP stresses.
    Breit GA; Watenpaugh DE; Ballard RE; Murthy G; Hargens AR
    Physiologist; 1993; 36(1 Suppl):S110-1. PubMed ID: 11537414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Capillary blood flow with dynamical change of tissue pressure caused by exterior force].
    Liu Y; Xu S; Yan J; Shen G; Sun W; Chew Y; Low H; Xu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):699-703. PubMed ID: 15553839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit.
    Becker BF; Chappell D; Jacob M
    Basic Res Cardiol; 2010 Nov; 105(6):687-701. PubMed ID: 20859744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network thermodynamic analysis of vasomotion in a microvascular network.
    Diller KR; Dunaway DL
    Biorheology; 1991; 28(5):369-82. PubMed ID: 1782392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of body fluids: local mechanisms guarding interstitial fluid volume.
    Aukland K
    J Physiol (Paris); 1984; 79(6):395-400. PubMed ID: 6399307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Starling forces and hemodynamics during early laminitis induced by an aqueous extract of black walnut (Juglans nigra) in horses.
    Eaton SA; Allen D; Eades SC; Schneider DA
    Am J Vet Res; 1995 Oct; 56(10):1338-44. PubMed ID: 8928952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.