These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38371946)

  • 21. Modeling Tube Clearance and Bounding the Effect of Friction in Concentric Tube Robot Kinematics.
    Ha J; Fagogenis G; Dupont PE
    IEEE Trans Robot; 2019 Apr; 35(2):353-370. PubMed ID: 30976208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model-based Design of the COAST Guidewire Robot for Large Deflection.
    Chitalia Y; Sarma A; Brumfiel TA; Deaton NJ; Sheft M; Desai JP;
    IEEE Robot Autom Lett; 2023 Sep; 8(9):5345-5352. PubMed ID: 37614723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time Adaptive Kinematic Model Estimation of Concentric Tube Robots.
    Kim C; Ryu SC; Dupont PE
    Rep U S; 2015; 2015():3214-3219. PubMed ID: 27175307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing Tube Precurvature to Enhance Elastic Stability of Concentric Tube Robots.
    Ha J; Park FC; Dupont PE
    IEEE Trans Robot; 2017 Feb; 33(1):22-37. PubMed ID: 28966566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning the Complete Shape of Concentric Tube Robots.
    Kuntz A; Sethi A; Webster RJ; Alterovitz R
    IEEE Trans Med Robot Bionics; 2020 May; 2(2):140-147. PubMed ID: 32455338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motion Planning for Concentric Tube Robots Using Mechanics-based Models.
    Torres LG; Alterovitz R
    Rep U S; 2011; ():5153-5159. PubMed ID: 25000192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimizing Design Parameters for Sets of Concentric Tube Robots using Sampling-based Motion Planning.
    Baykal C; Torres LG; Alterovitz R
    Rep U S; 2015 Sep; 2015():4381-4387. PubMed ID: 26951790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inverse Kinematics of Concentric Tube Robots in the Presence of Environmental Constraints.
    Jabari M; Zakeri M; Janabi-Sharifi F; Norouzi-Ghazbi S
    Appl Bionics Biomech; 2021; 2021():4107732. PubMed ID: 34434252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fast torsionally compliant kinematic model of concentric-tube robots.
    Xu R; Patel RV
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():904-7. PubMed ID: 23366039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating exploration for deep reinforcement learning of concentric tube robot control.
    Iyengar K; Dwyer G; Stoyanov D
    Int J Comput Assist Radiol Surg; 2020 Jul; 15(7):1157-1165. PubMed ID: 32506349
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation.
    Grazioso S; Di Gironimo G; Siciliano B
    Soft Robot; 2019 Dec; 6(6):790-811. PubMed ID: 30481112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spinal Helical Actuation Patterns for Locomotion in Soft Robots.
    Case JC; Gibert J; Booth J; SunSpiral V; Kramer-Bottiglio R
    IEEE Robot Autom Lett; 2020 Jul; 5(3):3814-3821. PubMed ID: 33088914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-Metallic MR-Guided Concentric Tube Robot for Intracerebral Hemorrhage Evacuation.
    Gunderman AL; Sengupta S; Siampli E; Sigounas D; Kellner C; Oluigbo C; Sharma K; Godage I; Cleary K; Chen Y
    IEEE Trans Biomed Eng; 2023 Oct; 70(10):2895-2904. PubMed ID: 37074885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Concentric Tube Robots as Steerable Needles: Achieving Follow-the-Leader Deployment.
    Gilbert HB; Neimat J; Webster RJ
    IEEE Trans Robot; 2015 Apr; 31(2):246-258. PubMed ID: 26622208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design, Fabrication, and Testing of a Needle-Sized Wrist for Surgical Instruments.
    Swaney PJ; York PA; Gilbert HB; Burgner-Kahrs J; Webster RJ
    J Med Device; 2017 Mar; 11(1):0145011-145019. PubMed ID: 28070228
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematic modelling and experimental testing of a particle-jamming soft robot based on a DEM-FEM coupling method.
    Xu F; Ma K; Jiang Q; Jiang GP
    Bioinspir Biomim; 2023 Jun; 18(4):. PubMed ID: 37285858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid two-anchor crawling from a milliscale prismatic-push-pull (3P) robot.
    Zhou W; Gravish N
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32702676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algorithms for Design of Continuum Robots Using the Concentric Tubes Approach: A Neurosurgical Example.
    Anor T; Madsen JR; Dupont P
    IEEE Int Conf Robot Autom; 2011 May; ():667-673. PubMed ID: 22270831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stiffness Control of Surgical Continuum Manipulators.
    Mahvash M; Dupont PE
    IEEE Trans Robot; 2011 Apr; 27(2):. PubMed ID: 24273466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.