These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38371964)
1. On the pressure wave emanating from a deflagration flame front. Bisio V; Montomoli F; Rossin S; Tagarielli VL Heliyon; 2024 Feb; 10(3):e26012. PubMed ID: 38371964 [TBL] [Abstract][Full Text] [Related]
2. Implementation of the Onsager Theorem to Evaluate the Speed of the Deflagration Wave. Sher E; Moshkovich-Makarenko I; Moshkovich Y; Cukurel B Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286781 [TBL] [Abstract][Full Text] [Related]
3. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration. Valiev DM; Bychkov V; Akkerman V; Eriksson LE Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036317. PubMed ID: 19905222 [TBL] [Abstract][Full Text] [Related]
4. Suppression of deflagration flame propagation of methane-air in tube by argon gas and explosion-eliminating chamber. Wang Q; Xu X; Chang W; Li Z; Zhang J; Li R Sci Rep; 2022 Mar; 12(1):4965. PubMed ID: 35322805 [TBL] [Abstract][Full Text] [Related]
5. Flame deflagration in side-on vented detonation tubes: A large scale study. Ajrash MJ; Zanganeh J; Moghtaderi B J Hazard Mater; 2018 Mar; 345():38-47. PubMed ID: 29128725 [TBL] [Abstract][Full Text] [Related]
6. Experimental investigation of spontaneous ignition and flame propagation at pressurized hydrogen release through tubes with varying cross-section. Duan Q; Xiao H; Gao W; Gong L; Sun J J Hazard Mater; 2016 Dec; 320():18-26. PubMed ID: 27505290 [TBL] [Abstract][Full Text] [Related]
7. Study on noise-vibration coupling characteristics of premixed methane-air flame propagation in a tube with an acoustic absorption material. Wang Q; Chang W; Liu S; Li Z; Zhu K RSC Adv; 2019 Sep; 9(49):28323-28329. PubMed ID: 35529608 [TBL] [Abstract][Full Text] [Related]
8. Numerical simulations of mechanical and ignition-deflagration responses for PBXs under low-to-medium-level velocity impact loading. Yang K; Wu Y; Huang F; Li M J Hazard Mater; 2017 Sep; 337():148-162. PubMed ID: 28521204 [TBL] [Abstract][Full Text] [Related]
9. Impact of suspended coal dusts on methane deflagration properties in a large-scale straight duct. Ajrash MJ; Zanganeh J; Moghtaderi B J Hazard Mater; 2017 Sep; 338():334-342. PubMed ID: 28582714 [TBL] [Abstract][Full Text] [Related]
10. Investigation on thermokinetic suppression of ammonium polyphosphate on sucrose dust deflagration: Based on flame propagation, thermal decomposition and residue analysis. Huang C; Yuan B; Zhang H; Zhao Q; Li P; Chen X; Yun Y; Chen G; Feng M; Li Y J Hazard Mater; 2021 Feb; 403():123653. PubMed ID: 32827861 [TBL] [Abstract][Full Text] [Related]
11. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy. Pang L; Wang C; Han M; Xu Z J Hazard Mater; 2015 Dec; 299():174-80. PubMed ID: 26124063 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model. Ivanov MF; Kiverin AD; Liberman MA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056313. PubMed ID: 21728653 [TBL] [Abstract][Full Text] [Related]
14. Experimental evaluation and analysis of methane fire and explosion mitigation using isolation valves integrated with a vent system. Ajrash MJ; Zanganeh J; Moghtaderi B J Hazard Mater; 2017 Oct; 339():301-309. PubMed ID: 28658639 [TBL] [Abstract][Full Text] [Related]
15. Study on the Influence of Vent Shape and Blockage Ratio on the Premixed Gas Explosion in the Chamber with a Small Aspect Ratio. Jia H; Cui B; Duan Y; Zheng K ACS Omega; 2022 Jul; 7(26):22787-22796. PubMed ID: 35811877 [TBL] [Abstract][Full Text] [Related]
16. Deflagration to detonation transition in JP-10 mist/air mixtures in a large-scale tube. Li S; Liu Q; Chen X; Huang J; Li J J Hazard Mater; 2017 Oct; 339():100-113. PubMed ID: 28633081 [TBL] [Abstract][Full Text] [Related]
17. ReaxFF based molecular dynamics simulations of ignition front propagation in hydrocarbon/oxygen mixtures under high temperature and pressure conditions. Ashraf C; Jain A; Xuan Y; van Duin AC Phys Chem Chem Phys; 2017 Feb; 19(7):5004-5017. PubMed ID: 28140413 [TBL] [Abstract][Full Text] [Related]
18. Thermonuclear supernovae: simulations of the deflagration stage and their implications. Gamezo VN; Khokhlov AM; Oran ES; Chtchelkanova AY; Rosenberg RO Science; 2003 Jan; 299(5603):77-81. PubMed ID: 12446871 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of Methane Explosion and Dynamic Response of Rock Mass in an H-Type Roadway with Different Ignition Sources. Dou X; Zhang S; Manzoor MU; Wen X ACS Omega; 2023 Dec; 8(49):46513-46522. PubMed ID: 38107950 [TBL] [Abstract][Full Text] [Related]
20. Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering. Akkerman V; Law CK; Bychkov V Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026305. PubMed ID: 21405904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]