BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38372238)

  • 21. Single-Atom Cu Nanozyme-Loaded Bone Scaffolds for Ferroptosis-Synergized Mild Photothermal Therapy in Osteosarcoma Treatment.
    Yan Z; Wu X; Tan W; Yan J; Zhou J; Chen S; Miao J; Cheng J; Shuai C; Deng Y
    Adv Healthc Mater; 2024 Jun; 13(15):e2304595. PubMed ID: 38424663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid mineralization of graphene-based 3D porous scaffolds by semi-dry electrodeposition for photothermal treatment of tumor-induced bone defects.
    Nie W; Dai X; Copus JS; Kengla C; Xie R; Seeds M; Atala A; He C
    Acta Biomater; 2022 Nov; 153():573-584. PubMed ID: 36130660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration.
    Yang Q; Yin H; Xu T; Zhu D; Yin J; Chen Y; Yu X; Gao J; Zhang C; Chen Y; Gao Y
    Small; 2020 Apr; 16(14):e1906814. PubMed ID: 32108432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair.
    Luo Y; Wei X; Wan Y; Lin X; Wang Z; Huang P
    Acta Biomater; 2019 Jul; 92():37-47. PubMed ID: 31108260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bifunctional scaffolds of hydroxyapatite/poly(dopamine)/carboxymethyl chitosan with osteogenesis and anti-osteosarcoma effect.
    Yao M; Zou Q; Zou W; Xie Z; Li Z; Zhao X; Du C
    Biomater Sci; 2021 May; 9(9):3319-3333. PubMed ID: 33527931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing.
    Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Micelle encapsulated curcumin and piperine-laden 3D printed calcium phosphate scaffolds enhance in vitro biological properties.
    Bose S; Sarkar N; Majumdar U
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113563. PubMed ID: 37832173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering a triple-functional magnetic gel driving mutually-synergistic mild hyperthermia-starvation therapy for osteosarcoma treatment and augmented bone regeneration.
    Yu K; Zhou H; Xu Y; Cao Y; Zheng Y; Liang B
    J Nanobiotechnology; 2023 Jun; 21(1):201. PubMed ID: 37365598
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilizing magnesium ions on 3D printed porous tantalum scaffolds with polydopamine for improved vascularization and osteogenesis.
    Ma L; Cheng S; Ji X; Zhou Y; Zhang Y; Li Q; Tan C; Peng F; Zhang Y; Huang W
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111303. PubMed ID: 32919664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional-printed MPBI@β-TCP scaffold promotes bone regeneration and impedes osteosarcoma under near-infrared laser irradiation.
    Lu L; Wang H; Yang M; Wang L; Gan K
    FASEB J; 2023 May; 37(5):e22924. PubMed ID: 37071462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zero-Dimensional Carbon Dots Enhance Bone Regeneration, Osteosarcoma Ablation, and Clinical Bacterial Eradication.
    Lu Y; Li L; Li M; Lin Z; Wang L; Zhang Y; Yin Q; Xia H; Han G
    Bioconjug Chem; 2018 Sep; 29(9):2982-2993. PubMed ID: 29986578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Printed Bioceramic Scaffolds as a Universal Therapeutic Platform for Synergistic Therapy of Osteosarcoma.
    Dang W; Yi K; Ju E; Jin Y; Xu Y; Wang H; Chen WC; Wang K; Wang Y; Tao Y; Li M
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18488-18499. PubMed ID: 33856761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing.
    Liu C; Wang Z; Wei X; Chen B; Luo Y
    Acta Biomater; 2021 Sep; 131():314-325. PubMed ID: 34256189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-Nozzle 3D Printed Nano-Hydroxyapatite Scaffold Loaded with Vancomycin Sustained-Release Microspheres for Enhancing Bone Regeneration.
    Li J; Li K; Du Y; Tang X; Liu C; Cao S; Zhao B; Huang H; Zhao H; Kong W; Xu T; Shao C; Shao J; Zhang G; Lan H; Xi Y
    Int J Nanomedicine; 2023; 18():307-322. PubMed ID: 36700146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres.
    Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L
    Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.