These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38372285)
1. Dual-Salt Mixed Electrolyte for High Performance Aqueous Aluminum Batteries. Sun Q; Chai L; Chen S; Zhang W; Yang HY; Li Z ACS Appl Mater Interfaces; 2024 Feb; 16(8):10061-10069. PubMed ID: 38372285 [TBL] [Abstract][Full Text] [Related]
2. Bimetallic Rechargeable Al/Zn Hybrid Aqueous Batteries Based on Al-Zn Alloys with Composite Electrolytes. Yang X; Zhang C; Chai L; Zhang W; Li Z Adv Mater; 2022 Nov; 34(45):e2206099. PubMed ID: 36103726 [TBL] [Abstract][Full Text] [Related]
3. Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) Zhou A; Jiang L; Yue J; Tong Y; Zhang Q; Lin Z; Liu B; Wu C; Suo L; Hu YS; Li H; Chen L ACS Appl Mater Interfaces; 2019 Nov; 11(44):41356-41362. PubMed ID: 31603299 [TBL] [Abstract][Full Text] [Related]
4. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells. Adil M; Ghosh A; Mitra S ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172 [TBL] [Abstract][Full Text] [Related]
5. Architecting a Stable High-Energy Aqueous Al-Ion Battery. Yan C; Lv C; Wang L; Cui W; Zhang L; Dinh KN; Tan H; Wu C; Wu T; Ren Y; Chen J; Liu Z; Srinivasan M; Rui X; Yan Q; Yu G J Am Chem Soc; 2020 Sep; 142(36):15295-15304. PubMed ID: 32786747 [TBL] [Abstract][Full Text] [Related]
6. Low Concentration DMF/H Yuan X; Li Y; Zhu Y; Deng W; Li C; Zhou Z; Hu J; Zhang M; Chen H; Li R ACS Appl Mater Interfaces; 2021 Aug; 13(32):38248-38255. PubMed ID: 34344149 [TBL] [Abstract][Full Text] [Related]
7. Optimization of Electrolytes for High-Performance Aqueous Aluminum-Ion Batteries. Ejigu A; Le Fevre LW; Elgendy A; Spencer BF; Bawn C; Dryfe RAW ACS Appl Mater Interfaces; 2022 Jun; 14(22):25232-25245. PubMed ID: 35622978 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous Formation of Interphases on both Positive and Negative Electrodes in High-Voltage Aqueous Lithium-Ion Batteries. Hou X; Pollard TP; Zhao W; He X; Ju X; Wang J; Du L; Paillard E; Lin H; Xu K; Borodin O; Winter M; Li J Small; 2022 Feb; 18(5):e2104986. PubMed ID: 34850544 [TBL] [Abstract][Full Text] [Related]
9. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries. Huang Z; Wang T; Li X; Cui H; Liang G; Yang Q; Chen Z; Chen A; Guo Y; Fan J; Zhi C Adv Mater; 2022 Jan; 34(4):e2106180. PubMed ID: 34699667 [TBL] [Abstract][Full Text] [Related]
10. Strengthen Water O-H Bond in Electrolytes for Enhanced Reversibility and Safety in Aqueous Aluminum Ion Batteries. Zhao Z; Zhang Z; Wang W; Xu T; Yu X Angew Chem Int Ed Engl; 2024 Oct; ():e202415436. PubMed ID: 39420130 [TBL] [Abstract][Full Text] [Related]
11. Solvation Structure Regulation for Highly Reversible Aqueous Al Metal Batteries. Zhao Z; Zhang Z; Xu T; Wang W; Wang B; Yu X J Am Chem Soc; 2024 Jan; 146(3):2257-2266. PubMed ID: 38195401 [TBL] [Abstract][Full Text] [Related]
12. Optimization of an Artificial Solid Electrolyte Interphase Formed on an Aluminum Anode and Its Application in Rechargeable Aqueous Aluminum Batteries. Li C; Lv Z; Du H; Zhao L; Yao J; Han Y; Chen H; Zhang G; Bian Y ACS Appl Mater Interfaces; 2023 Nov; 15(43):50166-50173. PubMed ID: 37870466 [TBL] [Abstract][Full Text] [Related]
13. Tuning the Electrolyte Solvation Structure via a Nonaqueous Co-Solvent to Enable High-Voltage Aqueous Lithium-Ion Batteries. Liu D; Yuan L; Li X; Chen J; Xiong R; Meng J; Zhu S; Huang Y ACS Appl Mater Interfaces; 2022 Apr; 14(15):17585-17593. PubMed ID: 35385244 [TBL] [Abstract][Full Text] [Related]
14. Highly Concentrated Salt Electrolyte for a Highly Stable Aqueous Dual-Ion Zinc Battery. Clarisza A; Bezabh HK; Jiang SK; Huang CJ; Olbasa BW; Wu SH; Su WN; Hwang BJ ACS Appl Mater Interfaces; 2022 Aug; 14(32):36644-36655. PubMed ID: 35927979 [TBL] [Abstract][Full Text] [Related]
15. Anode-Free Aqueous Aluminum Ion Batteries. Lu C; Zhao F; Tao B; Wang Z; Wang Y; Sheng J; Tang G; Wang Y; Guo X; Li J; Wei L Small; 2024 Sep; 20(38):e2402025. PubMed ID: 38766971 [TBL] [Abstract][Full Text] [Related]
16. Aqueous Aluminum Cells: Mechanisms of Aluminum Anode Reactions and Role of the Artificial Solid Electrolyte Interphase. Zhang Y; Bian Y; Lv Z; Han Y; Lin MC ACS Appl Mater Interfaces; 2021 Aug; 13(31):37091-37101. PubMed ID: 34337943 [TBL] [Abstract][Full Text] [Related]
17. Air-Stable and Low-Cost High-Voltage Hydrated Eutectic Electrolyte for High-Performance Aqueous Aluminum-Ion Rechargeable Battery with Wide-Temperature Range. Luo X; Wang R; Zhang L; Liu Z; Li H; Mao J; Zhang S; Hao J; Zhou T; Zhang C ACS Nano; 2024 May; 18(20):12981-12993. PubMed ID: 38717035 [TBL] [Abstract][Full Text] [Related]
18. Dilute Hybrid Electrolyte for Low-Temperature Aqueous Sodium-Ion Batteries. Sun Y; Zhang Y; Xu Z; Gou W; Han X; Liu M; Li CM ChemSusChem; 2022 Dec; 15(23):e202201362. PubMed ID: 36156433 [TBL] [Abstract][Full Text] [Related]
19. High-Rate Aqueous Aluminum-Ion Batteries Enabled by Confined Iodine Conversion Chemistry. Yang S; Li C; Lv H; Guo X; Wang Y; Han C; Zhi C; Li H Small Methods; 2021 Oct; 5(10):e2100611. PubMed ID: 34927954 [TBL] [Abstract][Full Text] [Related]
20. Sustainable Aqueous Batteries Based on Bipolar Dissociation of Aluminum Hydroxyacetate Electrolyte. Zhang Q; Liu X; Lu Y; Ni Y; Xie W; Yan Z; Li F; Chen J J Am Chem Soc; 2024 Feb; 146(8):5597-5604. PubMed ID: 38366992 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]