BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 38372426)

  • 1. Interactions between zinc and NRF2 in vascular redox signalling.
    Yang F; Smith MJ; Siow RCM; Aarsland D; Maret W; Mann GE
    Biochem Soc Trans; 2024 Feb; 52(1):269-278. PubMed ID: 38372426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling.
    Yang F; Smith MJ
    Free Radic Biol Med; 2024 Jan; 210():158-171. PubMed ID: 37989446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2.
    Bathish B; Robertson H; Dillon JF; Dinkova-Kostova AT; Hayes JD
    Free Radic Biol Med; 2022 Aug; 188():221-261. PubMed ID: 35728768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc ions as effectors of environmental oxidative lung injury.
    Wu W; Bromberg PA; Samet JM
    Free Radic Biol Med; 2013 Dec; 65():57-69. PubMed ID: 23747928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2.
    Tocmo R; Parkin K
    Free Radic Biol Med; 2019 Nov; 143():164-175. PubMed ID: 31349040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases.
    Dovinova I; Kvandová M; Balis P; Gresova L; Majzunova M; Horakova L; Chan JY; Barancik M
    Physiol Res; 2020 Dec; 69(Suppl 4):S541-S553. PubMed ID: 33656904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.
    Tebay LE; Robertson H; Durant ST; Vitale SR; Penning TM; Dinkova-Kostova AT; Hayes JD
    Free Radic Biol Med; 2015 Nov; 88(Pt B):108-146. PubMed ID: 26122708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging.
    Yu C; Xiao JH
    Oxid Med Cell Longev; 2021; 2021():6635460. PubMed ID: 34012501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury.
    Ajzashokouhi AH; Rezaee R; Omidkhoda N; Karimi G
    Cell Cycle; 2023 Apr; 22(7):741-757. PubMed ID: 36593695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bach1 differentially regulates distinct Nrf2-dependent genes in human venous and coronary artery endothelial cells adapted to physiological oxygen levels.
    Chapple SJ; Keeley TP; Mastronicola D; Arno M; Vizcay-Barrena G; Fleck R; Siow RCM; Mann GE
    Free Radic Biol Med; 2016 Mar; 92():152-162. PubMed ID: 26698668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p62/SQSTM1 protects against cisplatin-induced oxidative stress in kidneys by mediating the cross talk between autophagy and the Keap1-Nrf2 signalling pathway.
    Liao W; Wang Z; Fu Z; Ma H; Jiang M; Xu A; Zhang W
    Free Radic Res; 2019 Jul; 53(7):800-814. PubMed ID: 31223046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular protection afforded by zinc supplementation in human coronary artery smooth muscle cells mediated by NRF2 signaling under hypoxia/reoxygenation.
    Yang F; Smith MJ; Griffiths A; Morrell A; Chapple SJ; Siow RCM; Stewart T; Maret W; Mann GE
    Redox Biol; 2023 Aug; 64():102777. PubMed ID: 37315344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox and metal profiles in human coronary endothelial and smooth muscle cells under hyperoxia, physiological normoxia and hypoxia: Effects of NRF2 signaling on intracellular zinc.
    Smith MJ; Yang F; Griffiths A; Morrell A; Chapple SJ; Siow RCM; Stewart T; Maret W; Mann GE
    Redox Biol; 2023 Jun; 62():102712. PubMed ID: 37116256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation.
    Hyeon S; Lee H; Yang Y; Jeong W
    Free Radic Biol Med; 2013 Dec; 65():789-799. PubMed ID: 23954472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc.
    Darwish WS; Chen Z; Li Y; Tan H; Chiba H; Hui SP
    Mycotoxin Res; 2020 Aug; 36(3):287-299. PubMed ID: 32076947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia.
    Chiou YS; Huang Q; Ho CT; Wang YJ; Pan MH
    Free Radic Biol Med; 2016 May; 94():1-16. PubMed ID: 26878775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sitagliptin activates the p62-Keap1-Nrf2 signalling pathway to alleviate oxidative stress and excessive autophagy in severe acute pancreatitis-related acute lung injury.
    Kong L; Deng J; Zhou X; Cai B; Zhang B; Chen X; Chen Z; Wang W
    Cell Death Dis; 2021 Oct; 12(10):928. PubMed ID: 34635643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kaposi's sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1.
    Gjyshi O; Flaherty S; Veettil MV; Johnson KE; Chandran B; Bottero V
    J Virol; 2015 Feb; 89(4):2268-86. PubMed ID: 25505069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling.
    Ishii T; Warabi E; Mann GE
    Free Radic Biol Med; 2022 Oct; 191():191-202. PubMed ID: 36064071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.