These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 38372431)
1. Peptide-Driven Proton Sponge Nano-Assembly for Imaging and Triggering Lysosome-Regulated Immunogenic Cancer Cell Death. He T; Wen J; Wang W; Hu Z; Ling C; Zhao Z; Cheng Y; Chang YC; Xu M; Jin Z; Amer L; Sasi L; Fu L; Steinmetz NF; Rana TM; Wu P; Jokerst JV Adv Mater; 2024 May; 36(19):e2307679. PubMed ID: 38372431 [TBL] [Abstract][Full Text] [Related]
2. Sequentially pH-Responsive Drug-Delivery Nanosystem for Tumor Immunogenic Cell Death and Cooperating with Immune Checkpoint Blockade for Efficient Cancer Chemoimmunotherapy. Jiang M; Chen W; Yu W; Xu Z; Liu X; Jia Q; Guan X; Zhang W ACS Appl Mater Interfaces; 2021 Sep; 13(37):43963-43974. PubMed ID: 34506118 [TBL] [Abstract][Full Text] [Related]
3. Targeted Enrichment of Enzyme-Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Ji S; Li J; Duan X; Zhang J; Zhang Y; Song M; Li S; Chen H; Ding D Angew Chem Int Ed Engl; 2021 Dec; 60(52):26994-27004. PubMed ID: 34643312 [TBL] [Abstract][Full Text] [Related]
4. Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Sansone C; Bruno A; Piscitelli C; Baci D; Fontana A; Brunet C; Noonan DM; Albini A Cells; 2021 Jan; 10(2):. PubMed ID: 33504012 [TBL] [Abstract][Full Text] [Related]
5. Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. Chen C; Ni X; Jia S; Liang Y; Wu X; Kong D; Ding D Adv Mater; 2019 Dec; 31(52):e1904914. PubMed ID: 31696981 [TBL] [Abstract][Full Text] [Related]
7. Semiconducting Polymer Nanoparticles with Surface-Mimicking Protein Secondary Structure as Lysosome-Targeting Chimaeras for Self-Synergistic Cancer Immunotherapy. Qi J; Jia S; Kang X; Wu X; Hong Y; Shan K; Kong X; Wang Z; Ding D Adv Mater; 2022 Aug; 34(31):e2203309. PubMed ID: 35704513 [TBL] [Abstract][Full Text] [Related]
8. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Gao S; Tian H; Guo Y; Li Y; Guo Z; Zhu X; Chen X Acta Biomater; 2015 Oct; 25():184-93. PubMed ID: 26169933 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of Cellulose-Nanocrystal-Based Folate Targeted Nanomedicine via Layer-by-Layer Assembly with Lysosomal pH-Controlled Drug Release into the Nucleus. Li N; Zhang H; Xiao Y; Huang Y; Xu M; You D; Lu W; Yu J Biomacromolecules; 2019 Feb; 20(2):937-948. PubMed ID: 30621397 [TBL] [Abstract][Full Text] [Related]
11. Poly(ε-benzyloxycarbonyl-L-lysine)-grafted branched polyethylenimine as efficient nanocarriers for indomethacin with enhanced oral bioavailability and anti-inflammatory efficacy. Lu C; Li X; Xia W; Lu S; Luo H; Ye D; Zhang Y; Liu D Acta Biomater; 2017 Feb; 49():434-443. PubMed ID: 27867110 [TBL] [Abstract][Full Text] [Related]
12. The Achilles' heel of cancer: targeting tumors via lysosome-induced immunogenic cell death. Iulianna T; Kuldeep N; Eric F Cell Death Dis; 2022 May; 13(5):509. PubMed ID: 35637197 [TBL] [Abstract][Full Text] [Related]
13. Harnessing self-assembling peptide nanofibers toprime robust tumor-specific CD8 T cell responses in mice. Mohseninia A; Dehghani P; Bargahi A; Rad-Malekshahi M; Rahimikian R; Movahed A; Reza Farzaneh M; Mohammadi M Int Immunopharmacol; 2022 Mar; 104():108522. PubMed ID: 35032825 [TBL] [Abstract][Full Text] [Related]
14. The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH. Benjaminsen RV; Mattebjerg MA; Henriksen JR; Moghimi SM; Andresen TL Mol Ther; 2013 Jan; 21(1):149-57. PubMed ID: 23032976 [TBL] [Abstract][Full Text] [Related]
15. Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. Feng Z; Wang H; Chen X; Xu B J Am Chem Soc; 2017 Nov; 139(43):15377-15384. PubMed ID: 28990765 [TBL] [Abstract][Full Text] [Related]
16. Sialic Acid-Targeted Nanovectors with Phenylboronic Acid-Grafted Polyethylenimine Robustly Enhance siRNA-Based Cancer Therapy. Ji M; Li P; Sheng N; Liu L; Pan H; Wang C; Cai L; Ma Y ACS Appl Mater Interfaces; 2016 Apr; 8(15):9565-76. PubMed ID: 27007621 [TBL] [Abstract][Full Text] [Related]
17. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. He R; Zang J; Zhao Y; Liu Y; Ruan S; Zheng X; Chong G; Xu D; Yang Y; Yang Y; Zhang T; Gu J; Dong H; Li Y J Nanobiotechnology; 2021 Dec; 19(1):426. PubMed ID: 34922541 [TBL] [Abstract][Full Text] [Related]
18. Blockage of the IDO1 pathway by charge-switchable nanoparticles amplifies immunogenic cell death for enhanced cancer immunotherapy. Shi M; Zhang J; Wang Y; Han Y; Zhao X; Hu H; Qiao M; Chen D Acta Biomater; 2022 Sep; 150():353-366. PubMed ID: 35843594 [TBL] [Abstract][Full Text] [Related]
19. A supramolecular self-assembled nanomaterial for synergistic therapy of immunosuppressive tumor. Wang T; Gao Z; Zhang Y; Hong Y; Tang Y; Shan K; Kong X; Wang Z; Shi Y; Ding D J Control Release; 2022 Nov; 351():272-283. PubMed ID: 36116581 [TBL] [Abstract][Full Text] [Related]
20. A Cascade-Targeted Enzyme-Instructed Peptide Self-Assembly Strategy for Cancer Immunotherapy through Boosting Immunogenic Cell Death. Xie L; Ding Y; Zhang X; Zhang Z; Zeng S; Wang L; Yang Z; Liu Q; Hu ZW Small Methods; 2023 May; 7(5):e2201416. PubMed ID: 36965100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]