These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38372931)

  • 1. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared.
    Sun C; Fan Q; Xie R; Luo C; Hu B; Wang Q
    Neurosci Bull; 2024 Feb; ():. PubMed ID: 38372931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upconversion Nanoparticle-Mediated Optogenetics.
    Yi Z; All AH; Liu X
    Adv Exp Med Biol; 2021; 1293():641-657. PubMed ID: 33398847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation.
    All AH; Zeng X; Teh DBL; Yi Z; Prasad A; Ishizuka T; Thakor N; Hiromu Y; Liu X
    Adv Mater; 2019 Oct; 31(41):e1803474. PubMed ID: 31432555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nongenetic optical modulation of neural stem cell proliferation and neuronal/glial differentiation.
    Wang M; Xu Z; Liu Q; Sun W; Jiang B; Yang K; Li J; Gong Y; Liu Q; Liu D; Li X
    Biomaterials; 2019 Dec; 225():119539. PubMed ID: 31622821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotransducer-Enabled Deep-Brain Neuromodulation with NIR-II Light.
    Wu X; Yang F; Cai S; Pu K; Hong G
    ACS Nano; 2023 May; 17(9):7941-7952. PubMed ID: 37079455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shedding light on neurons: optical approaches for neuromodulation.
    Jiang S; Wu X; Rommelfanger NJ; Ou Z; Hong G
    Natl Sci Rev; 2022 Oct; 9(10):nwac007. PubMed ID: 36196122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
    Chen S; Weitemier AZ; Zeng X; He L; Wang X; Tao Y; Huang AJY; Hashimotodani Y; Kano M; Iwasaki H; Parajuli LK; Okabe S; Teh DBL; All AH; Tsutsui-Kimura I; Tanaka KF; Liu X; McHugh TJ
    Science; 2018 Feb; 359(6376):679-684. PubMed ID: 29439241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles.
    Yaguchi M; Jia X; Schlesinger R; Jiang X; Ataka K; Heberle J
    Front Mol Biosci; 2021; 8():782688. PubMed ID: 35252344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition.
    Lin X; Chen X; Zhang W; Sun T; Fang P; Liao Q; Chen X; He J; Liu M; Wang F; Shi P
    Nano Lett; 2018 Feb; 18(2):948-956. PubMed ID: 29278506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared Deep Brain Stimulation in Living Mice.
    Chen S
    Methods Mol Biol; 2020; 2173():71-82. PubMed ID: 32651910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Triplet-Triplet Annihilation Upconversion: From Molecular Design to Present Applications.
    Zeng L; Huang L; Han J; Han G
    Acc Chem Res; 2022 Sep; 55(18):2604-2615. PubMed ID: 36074952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics.
    Wang Z; Hu M; Ai X; Zhang Z; Xing B
    Adv Biosyst; 2019 Jan; 3(1):e1800233. PubMed ID: 32627341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum.
    Cui H; Zhao S; Hong G
    Device; 2023 Oct; 1(4):. PubMed ID: 37990694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tether-free optogenetic control of insulin secretion using an upconversion nanoparticle-doped hydrogel platform.
    Bansal A; Zhang J; Lu Q; Mei Q; Zhang Y
    Biomater Sci; 2023 Mar; 11(6):2046-2055. PubMed ID: 36723390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources.
    Ding H; Lu L; Shi Z; Wang D; Li L; Li X; Ren Y; Liu C; Cheng D; Kim H; Giebink NC; Wang X; Yin L; Zhao L; Luo M; Sheng X
    Proc Natl Acad Sci U S A; 2018 Jun; 115(26):6632-6637. PubMed ID: 29891705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach.
    Chen S; Wu J; Cai A; Gonzalez N; Yin R
    Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.