BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38373026)

  • 1. Wearable intelligent sweat platform for SERS-AI diagnosis of gout.
    Chen Z; Wang W; Tian H; Yu W; Niu Y; Zheng X; Liu S; Wang L; Huang Y
    Lab Chip; 2024 Mar; 24(7):1996-2004. PubMed ID: 38373026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers.
    Chung M; Skinner WH; Robert C; Campbell CJ; Rossi RM; Koutsos V; Radacsi N
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51504-51518. PubMed ID: 34672514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional glass/p-ATP/Ag NPs as multifunctional SERS substrates for label-free quantification of uric acid in sweat.
    Lu D; Cai R; Liao Y; You R; Lu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug; 296():122631. PubMed ID: 37037174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wearable Surface-Enhanced Raman Scattering Sensor for Label-Free Molecular Detection.
    Koh EH; Lee WC; Choi YJ; Moon JI; Jang J; Park SG; Choo J; Kim DH; Jung HS
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3024-3032. PubMed ID: 33404230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Enabled SERS Identification of Gaseous Molecules on Flexible Plasmonic MOF Nanowire Films.
    Li M; He X; Wu C; Wang L; Zhang X; Gong X; Zeng X; Huang Y
    ACS Sens; 2024 Feb; 9(2):979-987. PubMed ID: 38299870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screen printing and laser-induced flexible sensors for the simultaneous sensitive detection of uric acid, tyrosine, and ascorbic acid in sweat.
    Chen S; Cao Z; Zhou K; Li S; Li H; Xu K; Tang H; Deng H; Zhou Q; Pan J; Xia F
    Analyst; 2023 Jun; 148(13):2965-2974. PubMed ID: 37265393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Wearable Electrochemical Biosensor Utilizing Functionalized Ti
    Chen F; Wang J; Chen L; Lin H; Han D; Bao Y; Wang W; Niu L
    Anal Chem; 2024 Mar; 96(9):3914-3924. PubMed ID: 38387027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonenzymatic Sweat Wearable Uric Acid Sensor Based on N-Doped Reduced Graphene Oxide/Au Dual Aerogels.
    Chen Y; Li G; Mu W; Wan X; Lu D; Gao J; Wen D
    Anal Chem; 2023 Feb; 95(7):3864-3872. PubMed ID: 36745592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Synthesis of Au Nanoparticles on Metal-Phenolic Network for Sweat SERS Analysis.
    Zhang X; Wang X; Ning M; Wang P; Wang W; Zhang X; Liu Z; Zhang Y; Li S
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36080014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sweat Sensor Based on Wearable Janus Textiles for Sweat Collection and Microstructured Optical Fiber for Surface-Enhanced Raman Scattering Analysis.
    Han Y; Fang X; Li H; Zha L; Guo J; Zhang X
    ACS Sens; 2023 Dec; 8(12):4774-4781. PubMed ID: 38051949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Plasmonic Sweat Biosensor for Acetaminophen Drug Monitoring.
    Xiao J; Wang J; Luo Y; Xu T; Zhang X
    ACS Sens; 2023 Apr; 8(4):1766-1773. PubMed ID: 36990683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous detection of urea and lactate in sweat based on a wearable sweat biosensor.
    Yang H; Ji Y; Shen K; Qian Y; Ye C
    Biomed Opt Express; 2024 Jan; 15(1):14-27. PubMed ID: 38223175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable plasmonic paper-based microfluidics for continuous sweat analysis.
    Mogera U; Guo H; Namkoong M; Rahman MS; Nguyen T; Tian L
    Sci Adv; 2022 Mar; 8(12):eabn1736. PubMed ID: 35319971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early-stage oral cancer diagnosis by artificial intelligence-based SERS using Ag NWs@ZIF core-shell nanochains.
    Xie X; Yu W; Chen Z; Wang L; Yang J; Liu S; Li L; Li Y; Huang Y
    Nanoscale; 2023 Aug; 15(32):13466-13472. PubMed ID: 37548371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable SERS Sensor Based on Omnidirectional Plasmonic Nanovoids Array with Ultra-High Sensitivity and Stability.
    Zhu K; Yang K; Zhang Y; Yang Z; Qian Z; Li N; Li L; Jiang G; Wang T; Zong S; Wu L; Wang Z; Cui Y
    Small; 2022 Aug; 18(32):e2201508. PubMed ID: 35843883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe Single-Atom Nanozyme-Modified Wearable Hydrogel Patch for Precise Analysis of Uric Acid at Rest.
    Zhang Y; Hou C; Zhao P; Zeng X; Liu Y; Chen J; Gao Y; Wang C; Hou J; Huo D
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43541-43549. PubMed ID: 37694575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Adhesive, Biocompatible, Wearable Microfluidics with Erasable Liquid Metal Plasmonic Hotspots for Glucose Detection in Sweat.
    Yuan Q; Fang H; Wu X; Wu J; Luo X; Peng R; Xu S; Yan S
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37903285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Universal Fully Integrated Wearable Sensor Arrays for the Multiple Electrolyte and Metabolite Monitoring in Raw Sweat, Saliva, or Urine.
    Bi Y; Sun M; Wang J; Zhu Z; Bai J; Emran MY; Kotb A; Bo X; Zhou M
    Anal Chem; 2023 Apr; 95(16):6690-6699. PubMed ID: 36961950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wearable sensor based on multifunctional conductive hydrogel for simultaneous accurate pH and tyrosine monitoring in sweat.
    Xu Z; Qiao X; Tao R; Li Y; Zhao S; Cai Y; Luo X
    Biosens Bioelectron; 2023 Aug; 234():115360. PubMed ID: 37126874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophilic metal-organic frameworks integrated uricase for wearable detection of sweat uric acid.
    Xiao J; Luo Y; Su L; Lu J; Han W; Xu T; Zhang X
    Anal Chim Acta; 2022 May; 1208():339843. PubMed ID: 35525593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.