These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38373136)

  • 1. A Novel Data Augmentation Approach Using Mask Encoding for Deep Learning-Based Asynchronous SSVEP-BCI.
    Ding W; Liu A; Guan L; Chen X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():875-886. PubMed ID: 38373136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRCA-Net: using TRCA filters to boost the SSVEP classification with convolutional neural network.
    Deng Y; Sun Q; Wang C; Wang Y; Zhou SK
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37399806
    [No Abstract]   [Full Text] [Related]  

  • 3. Filter Bank Convolutional Neural Network for Short Time-Window Steady-State Visual Evoked Potential Classification.
    Ding W; Shan J; Fang B; Wang C; Sun F; Li X
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2615-2624. PubMed ID: 34851830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transformer-based deep neural network model for SSVEP classification.
    Chen J; Zhang Y; Pan Y; Xu P; Guan C
    Neural Netw; 2023 Jul; 164():521-534. PubMed ID: 37209444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 8. Classification of SSVEP-EEG signals using CNN and Red Fox Optimization for BCI applications.
    Bhuvaneshwari M; Grace Mary Kanaga E; George ST
    Proc Inst Mech Eng H; 2023 Jan; 237(1):134-143. PubMed ID: 36398685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection.
    Yao H; Liu K; Deng X; Tang X; Yu H
    J Neurosci Methods; 2022 Sep; 379():109674. PubMed ID: 35842015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient CNN-LSTM network with spectral normalization and label smoothing technologies for SSVEP frequency recognition.
    Pan Y; Chen J; Zhang Y; Zhang Y
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36041426
    [No Abstract]   [Full Text] [Related]  

  • 11. A Convolutional Neural Network for the Detection of Asynchronous Steady State Motion Visual Evoked Potential.
    Zhang X; Xu G; Mou X; Ravi A; Li M; Wang Y; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1303-1311. PubMed ID: 31071044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task.
    Lashgari E; Ott J; Connelly A; Baldi P; Maoz U
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352734
    [No Abstract]   [Full Text] [Related]  

  • 13. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing user-dependent and user-independent training of CNN for SSVEP BCI.
    Ravi A; Beni NH; Manuel J; Jiang N
    J Neural Eng; 2020 Apr; 17(2):026028. PubMed ID: 31923910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-day and multi-band dataset for a steady-state visual-evoked potential-based brain-computer interface.
    Choi GY; Han CH; Jung YJ; Hwang HJ
    Gigascience; 2019 Nov; 8(11):. PubMed ID: 31765472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI.
    Li P; Su J; Belkacem AN; Cheng L; Chen C
    Front Neurosci; 2022; 16():971039. PubMed ID: 35958998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-temporal equalization multi-window algorithm for asynchronous SSVEP-based BCI.
    Yang C; Yan X; Wang Y; Chen Y; Zhang H; Gao X
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34237711
    [No Abstract]   [Full Text] [Related]  

  • 19. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
    Fahimi F; Zhang Z; Goh WB; Lee TS; Ang KK; Guan C
    J Neural Eng; 2019 Apr; 16(2):026007. PubMed ID: 30524056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Hybrid-Domain Deep Learning-Based BCI For Discriminating Hand Motion Planning From EEG Sources.
    Ieracitano C; Morabito FC; Hussain A; Mammone N
    Int J Neural Syst; 2021 Sep; 31(9):2150038. PubMed ID: 34376121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.