BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38373205)

  • 1. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries.
    Zhou Q; Liu HK; Dou SX; Chong S
    ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries.
    Li L; Hu Z; Lu Y; Wang C; Zhang Q; Zhao S; Peng J; Zhang K; Chou SL; Chen J
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):13050-13056. PubMed ID: 33780584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potassium Nickel Iron Hexacyanoferrate as Ultra-Long-Life Cathode Material for Potassium-Ion Batteries with High Energy Density.
    Chong S; Yang J; Sun L; Guo S; Liu Y; Liu HK
    ACS Nano; 2020 Aug; 14(8):9807-9818. PubMed ID: 32709197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries.
    Deng L; Qu J; Niu X; Liu J; Zhang J; Hong Y; Feng M; Wang J; Hu M; Zeng L; Zhang Q; Guo L; Zhu Y
    Nat Commun; 2021 Apr; 12(1):2167. PubMed ID: 33846311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating.
    Xue Q; Li L; Huang Y; Huang R; Wu F; Chen R
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22339-22345. PubMed ID: 31149796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Voltage Potassium Hexacyanoferrate Cathode via High-Entropy and Potassium Incorporation for Stable Sodium-Ion Batteries.
    Dai J; Tan S; Wang L; Ling F; Duan F; Ma M; Shao Y; Rui X; Yao Y; Hu E; Wu X; Li C; Yu Y
    ACS Nano; 2023 Nov; 17(21):20949-20961. PubMed ID: 37906735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries.
    Zhou A; Xu Z; Gao H; Xue L; Li J; Goodenough JB
    Small; 2019 Oct; 15(42):e1902420. PubMed ID: 31469502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries.
    Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S
    Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg.
    Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y
    Angew Chem Int Ed Engl; 2024 Feb; ():e202400214. PubMed ID: 38299760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN)
    Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J
    ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K
    Zhang Y; Niu X; Tan L; Deng L; Jin S; Zeng L; Xu H; Zhu Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9332-9340. PubMed ID: 31999423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Quest for Stable Potassium-Ion Battery Chemistry.
    Wu X; Qiu S; Liu Y; Xu Y; Jian Z; Yang J; Ji X; Liu J
    Adv Mater; 2022 Feb; 34(5):e2106876. PubMed ID: 34648671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method.
    Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F
    Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Low-Strain Phosphate Cathode for High-Rate and Ultralong Cycle-Life Potassium-Ion Batteries.
    Liao J; Chen C; Hu Q; Du Y; He Y; Xu Y; Zhang Z; Zhou X
    Angew Chem Int Ed Engl; 2021 Nov; 60(48):25575-25582. PubMed ID: 34559443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Induced Conversion of CoFe Prussian Blue Analogs Nanocubes Wrapped by Doped Carbon Network Exhibiting Fast and Stable Potassium Ion Storage as Anode.
    Ouyang Y; Li P; Ma Y; Wei J; Tian W; Chen J; Shi J; Zhu Y; Wu J; Wang H
    Small; 2024 Jun; 20(23):e2308484. PubMed ID: 38143292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the Prussian Blue Analog Co
    Deng L; Yang Z; Tan L; Zeng L; Zhu Y; Guo L
    Adv Mater; 2018 Aug; 30(31):e1802510. PubMed ID: 29931774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen and Oxygen Co-Doped Porous Hard Carbon Nanospheres with Core-Shell Architecture as Anode Materials for Superior Potassium-Ion Storage.
    Chong S; Yuan L; Li T; Shu C; Qiao S; Dong S; Liu Z; Yang J; Liu HK; Dou SX; Huang W
    Small; 2022 Feb; 18(8):e2104296. PubMed ID: 34873861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of Gradient Concentration Prussian White Cathodes for High-Performance Potassium-Ion Batteries.
    Chen X; Hua C; Zhang K; Sun H; Hu S; Jian Z
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47125-47134. PubMed ID: 37756438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn
    Ye L; Fu H; Cao R; Yang J
    J Colloid Interface Sci; 2024 Jun; 664():423-432. PubMed ID: 38484511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow Layered Iron-Based Prussian Blue Cathode with Reduced Defects for High-Performance Sodium-Ion Batteries.
    Wang CC; Zhang LL; Fu XY; Sun HB; Yang XL
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18959-18970. PubMed ID: 38569111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.