These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38373240)
1. Arsenite Mediates Selenite Resistance and Reduction in Lan Y; Luo X; Fan X; Wang G; Zheng S; Shi K Environ Sci Technol; 2024 Mar; 58(9):4204-4213. PubMed ID: 38373240 [TBL] [Abstract][Full Text] [Related]
2. Studies of selenium and arsenic mutual protection in human HepG2 cells. Kaur G; Ponomarenko O; Zhou JR; Swanlund DP; Summers KL; Dolgova NV; Antipova O; Pickering IJ; George GN; Leslie EM Chem Biol Interact; 2020 Aug; 327():109162. PubMed ID: 32524993 [TBL] [Abstract][Full Text] [Related]
3. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Tan Y; Yao R; Wang R; Wang D; Wang G; Zheng S Microb Cell Fact; 2016 Sep; 15(1):157. PubMed ID: 27630128 [TBL] [Abstract][Full Text] [Related]
4. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. Zhang J; Wang Y; Shao Z; Li J; Zan S; Zhou S; Yang R J Environ Sci (China); 2019 Mar; 77():238-249. PubMed ID: 30573088 [TBL] [Abstract][Full Text] [Related]
5. Efficacy of trimethylselenonium versus selenite in cancer chemoprevention and its modulation by arsenite. Ip C; Ganther H Carcinogenesis; 1988 Aug; 9(8):1481-4. PubMed ID: 3402045 [TBL] [Abstract][Full Text] [Related]
6. Human red blood cell uptake and sequestration of arsenite and selenite: Evidence of seleno-bis(S-glutathionyl) arsinium ion formation in human cells. Kaur G; Javed W; Ponomarenko O; Shekh K; Swanlund DP; Zhou JR; Summers KL; Casini A; Wenzel MN; Casey JR; Cordat E; Pickering IJ; George GN; Leslie EM Biochem Pharmacol; 2020 Oct; 180():114141. PubMed ID: 32652143 [TBL] [Abstract][Full Text] [Related]
7. Selenium Nanoparticle Synthesized by Wang Y; Shu X; Hou J; Lu W; Zhao W; Huang S; Wu L Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30501097 [TBL] [Abstract][Full Text] [Related]
8. Selenium-mediated Cr(VI) reduction and SeNPs synthesis accelerated Bacillus cereus SES to remediate Cr contamination. Nie M; Cai M; Wu C; Li S; Chen S; Shi G; Wang X; Hu C; Xie J; Tang Y; Zhang H; Zhao X J Hazard Mater; 2023 Sep; 457():131713. PubMed ID: 37301074 [TBL] [Abstract][Full Text] [Related]
9. Selenite Bioremediation by Food-Grade Probiotic Lactobacillus casei ATCC 393: Insights from Proteomics Analysis. Qiao L; Dou X; Song X; Chang J; Zeng X; Zhu L; Xu C Microbiol Spectr; 2023 Jun; 11(3):e0065923. PubMed ID: 37219421 [TBL] [Abstract][Full Text] [Related]
10. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. Ge M; Zhou S; Li D; Song D; Yang S; Xu M J Hazard Mater; 2024 Jul; 472():134491. PubMed ID: 38703686 [TBL] [Abstract][Full Text] [Related]
11. Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15. Xue SJ; Zhang XT; Li XC; Zhao FY; Shu X; Jiang WW; Zhang JY J Hazard Mater; 2024 May; 470():134204. PubMed ID: 38579586 [TBL] [Abstract][Full Text] [Related]
12. Novel mechanisms of selenite reduction in Bacillus subtilis 168:Confirmation of multiple-pathway mediated remediation based on transcriptome analysis. Jia H; Huang S; Cheng S; Zhang X; Chen X; Zhang Y; Wang J; Wu L J Hazard Mater; 2022 Jul; 433():128834. PubMed ID: 35398797 [TBL] [Abstract][Full Text] [Related]
13. Silac-based quantitative proteomic analysis of Lactobacillus reuteri CRL 1101 response to the presence of selenite and selenium nanoparticles. Gómez-Gómez B; Pérez-Corona T; Mozzi F; Pescuma M; Madrid Y J Proteomics; 2019 Mar; 195():53-65. PubMed ID: 30593931 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of selenium nanoparticles and effects of selenite, selenate, and selenomethionine on cell growth and morphology in Rahnella aquatilis HX2. Zhu Y; Ren B; Li H; Lin Z; Bañuelos G; Li L; Zhao G; Guo Y Appl Microbiol Biotechnol; 2018 Jul; 102(14):6191-6205. PubMed ID: 29806064 [TBL] [Abstract][Full Text] [Related]
15. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. Tugarova AV; Mamchenkova PV; Khanadeev VA; Kamnev AA N Biotechnol; 2020 Sep; 58():17-24. PubMed ID: 32184193 [TBL] [Abstract][Full Text] [Related]
16. The fate of arsenic in rice plants (Oryza sativa L.): Influence of different forms of selenium. Wang K; Wang Y; Wan Y; Mi Z; Wang Q; Wang Q; Li H Chemosphere; 2021 Feb; 264(Pt 1):128417. PubMed ID: 33007565 [TBL] [Abstract][Full Text] [Related]
17. Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). Wang K; Wang Y; Li K; Wan Y; Wang Q; Zhuang Z; Guo Y; Li H J Nanobiotechnology; 2020 Jul; 18(1):103. PubMed ID: 32703232 [TBL] [Abstract][Full Text] [Related]
18. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. Khoei NS; Lampis S; Zonaro E; Yrjälä K; Bernardi P; Vallini G N Biotechnol; 2017 Jan; 34():1-11. PubMed ID: 27717878 [TBL] [Abstract][Full Text] [Related]
19. Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. Staicu LC; Wójtowicz PJ; Molnár Z; Ruiz-Agudo E; Gallego JLR; Baragaño D; Pósfai M Environ Pollut; 2022 Aug; 306():119451. PubMed ID: 35569621 [TBL] [Abstract][Full Text] [Related]