These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38373240)
21. Biogenic selenium nanoparticles: current status and future prospects. Wadhwani SA; Shedbalkar UU; Singh R; Chopade BA Appl Microbiol Biotechnol; 2016 Mar; 100(6):2555-66. PubMed ID: 26801915 [TBL] [Abstract][Full Text] [Related]
22. Occurrence of bacterial resistance to arsenite, copper, and selenite in adverse habitats. Burton GA Bull Environ Contam Toxicol; 1987 Dec; 39(6):990-7. PubMed ID: 3440156 [No Abstract] [Full Text] [Related]
23. Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Chang JS; Yoon IH; Lee JH; Kim KR; An J; Kim KW Environ Geochem Health; 2010 Apr; 32(2):95-105. PubMed ID: 19548094 [TBL] [Abstract][Full Text] [Related]
24. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Lampis S; Zonaro E; Bertolini C; Bernardi P; Butler CS; Vallini G Microb Cell Fact; 2014 Mar; 13(1):35. PubMed ID: 24606965 [TBL] [Abstract][Full Text] [Related]
25. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. Zheng S; Su J; Wang L; Yao R; Wang D; Deng Y; Wang R; Wang G; Rensing C BMC Microbiol; 2014 Aug; 14():204. PubMed ID: 25098921 [TBL] [Abstract][Full Text] [Related]
26. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. Lampis S; Zonaro E; Bertolini C; Cecconi D; Monti F; Micaroni M; Turner RJ; Butler CS; Vallini G J Hazard Mater; 2017 Feb; 324(Pt A):3-14. PubMed ID: 26952084 [TBL] [Abstract][Full Text] [Related]
27. Application of redox mediator to accelerate selenate reduction to elemental selenium by Enterobacter taylorae. Zhang Y; Zahir ZA; Amrhein C; Chang A; Frankenberger WT J Agric Food Chem; 2007 Jul; 55(14):5714-7. PubMed ID: 17579423 [TBL] [Abstract][Full Text] [Related]
28. Reduction of selenite to selenium nanospheres by Se(IV)-resistant Lactobacillus paralimentarius JZ07. Li Z; Wang Q; Dai F; Li H Food Chem; 2022 Nov; 393():133385. PubMed ID: 35751225 [TBL] [Abstract][Full Text] [Related]
29. Detoxification and reduction of selenite to elemental red selenium by Frankia. Rehan M; Alsohim AS; El-Fadly G; Tisa LS Antonie Van Leeuwenhoek; 2019 Jan; 112(1):127-139. PubMed ID: 30421099 [TBL] [Abstract][Full Text] [Related]
30. Thiol reduction of arsenite and selenite: DFT modeling of the pathways to an as-se bond. Harper LK; Antony S; Bayse CA Chem Res Toxicol; 2014 Dec; 27(12):2119-27. PubMed ID: 25403853 [TBL] [Abstract][Full Text] [Related]
31. Selenite resistance and biotransformation to SeNPs in Sinorhizobium meliloti 1021 and the synthetic promotion on alfalfa growth. Gao H; Ji Y; Chen W Microbiol Res; 2024 Mar; 280():127568. PubMed ID: 38118306 [TBL] [Abstract][Full Text] [Related]
32. The influence of arsenite on the interaction between selenite and methyl mercury. Alexander J Dev Toxicol Environ Sci; 1980; 8():585-90. PubMed ID: 7308065 [No Abstract] [Full Text] [Related]
33. Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria. Eswayah AS; Hondow N; Scheinost AC; Merroun M; Romero-González M; Smith TJ; Gardiner PHE Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519658 [TBL] [Abstract][Full Text] [Related]
34. Selenite Reduction and the Biogenesis of Selenium Nanoparticles by Wang Y; Shu X; Zhou Q; Fan T; Wang T; Chen X; Li M; Ma Y; Ni J; Hou J; Zhao W; Li R; Huang S; Wu L Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30227664 [TBL] [Abstract][Full Text] [Related]
35. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. El-Badri AM; Hashem AM; Batool M; Sherif A; Nishawy E; Ayaad M; Hassan HM; Elrewainy IM; Wang J; Kuai J; Wang B; Zheng S; Zhou G J Nanobiotechnology; 2022 Mar; 20(1):163. PubMed ID: 35351148 [TBL] [Abstract][Full Text] [Related]
36. Selenium (IV,VI) reduction and tolerance by fungi in an oxic environment. Rosenfeld CE; Kenyon JA; James BR; Santelli CM Geobiology; 2017 May; 15(3):441-452. PubMed ID: 28044397 [TBL] [Abstract][Full Text] [Related]
37. Effect of Endogenous Selenium on Arsenic Uptake and Antioxidative Enzymes in As-Exposed Rice Seedlings. Camara AY; Wan Y; Yu Y; Wang Q; Wang K; Li H Int J Environ Res Public Health; 2019 Sep; 16(18):. PubMed ID: 31514288 [TBL] [Abstract][Full Text] [Related]
38. The combined impacts of selenium and phosphorus on the fate of arsenic in rice seedlings (Oryza sativa L.). Wang Y; Kong L; Wang K; Tao Y; Qi H; Wan Y; Wang Q; Li H Chemosphere; 2022 Dec; 308(Pt 3):136590. PubMed ID: 36167200 [TBL] [Abstract][Full Text] [Related]
39. Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. Tan Y; Wang Y; Wang Y; Xu D; Huang Y; Wang D; Wang G; Rensing C; Zheng S J Hazard Mater; 2018 Oct; 359():129-138. PubMed ID: 30014908 [TBL] [Abstract][Full Text] [Related]
40. Selenite bioreduction with concomitant green synthesis of selenium nanoparticles by a selenite resistant EPS and siderophore producing terrestrial bacterium. Yadav P; Pandey S; Dubey SK Biometals; 2023 Oct; 36(5):1027-1045. PubMed ID: 37119424 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]