These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38373345)
1. Radioport: a radiomics-reporting network for interpretable deep learning in BI-RADS classification of mammographic calcification. Pang T; Wong JHD; Ng WL; Chan CS; Wang C; Zhou X; Yu Y Phys Med Biol; 2024 Mar; 69(6):. PubMed ID: 38373345 [No Abstract] [Full Text] [Related]
2. Artificial intelligence: Deep learning in oncological radiomics and challenges of interpretability and data harmonization. Papadimitroulas P; Brocki L; Christopher Chung N; Marchadour W; Vermet F; Gaubert L; Eleftheriadis V; Plachouris D; Visvikis D; Kagadis GC; Hatt M Phys Med; 2021 Mar; 83():108-121. PubMed ID: 33765601 [TBL] [Abstract][Full Text] [Related]
3. A deep learning method for classifying mammographic breast density categories. Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811 [TBL] [Abstract][Full Text] [Related]
4. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective. Mohamed AA; Luo Y; Peng H; Jankowitz RC; Wu S J Digit Imaging; 2018 Aug; 31(4):387-392. PubMed ID: 28932980 [TBL] [Abstract][Full Text] [Related]
5. Radiomics Based on Digital Mammography Helps to Identify Mammographic Masses Suspicious for Cancer. Wang G; Shi D; Guo Q; Zhang H; Wang S; Ren K Front Oncol; 2022; 12():843436. PubMed ID: 35433437 [TBL] [Abstract][Full Text] [Related]
6. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Liu H; Chen Y; Zhang Y; Wang L; Luo R; Wu H; Wu C; Zhang H; Tan W; Yin H; Wang D Eur Radiol; 2021 Aug; 31(8):5902-5912. PubMed ID: 33496829 [TBL] [Abstract][Full Text] [Related]
7. Determination of mammographic breast density using a deep convolutional neural network. Ciritsis A; Rossi C; Vittoria De Martini I; Eberhard M; Marcon M; Becker AS; Berger N; Boss A Br J Radiol; 2019 Jan; 92(1093):20180691. PubMed ID: 30209957 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive Word-Level Classification of Screening Mammography Reports Using a Neural Network Sequence Labeling Approach. Short RG; Bralich J; Bogaty D; Befera NT J Digit Imaging; 2019 Oct; 32(5):685-692. PubMed ID: 30338478 [TBL] [Abstract][Full Text] [Related]
9. Automatic Calcification Morphology and Distribution Classification for Breast Mammograms With Multi-Task Graph Convolutional Neural Network. Du H; Yao MM; Liu S; Chen L; Chan WP; Feng M IEEE J Biomed Health Inform; 2023 Aug; 27(8):3782-3793. PubMed ID: 37027577 [TBL] [Abstract][Full Text] [Related]
10. End-to-End Calcification Distribution Pattern Recognition for Mammograms: An Interpretable Approach with GNN. Yao MM; Du H; Hartman M; Chan WP; Feng M Diagnostics (Basel); 2022 Jun; 12(6):. PubMed ID: 35741186 [No Abstract] [Full Text] [Related]
11. A multi-stage fusion framework to classify breast lesions using deep learning and radiomics features computed from four-view mammograms. Jones MA; Sadeghipour N; Chen X; Islam W; Zheng B Med Phys; 2023 Dec; 50(12):7670-7683. PubMed ID: 37083190 [TBL] [Abstract][Full Text] [Related]
12. Deep learning networks find unique mammographic differences in previous negative mammograms between interval and screen-detected cancers: a case-case study. Hinton B; Ma L; Mahmoudzadeh AP; Malkov S; Fan B; Greenwood H; Joe B; Lee V; Kerlikowske K; Shepherd J Cancer Imaging; 2019 Jun; 19(1):41. PubMed ID: 31228956 [TBL] [Abstract][Full Text] [Related]
13. A New Computer-Aided Diagnosis System with Modified Genetic Feature Selection for BI-RADS Classification of Breast Masses in Mammograms. Boumaraf S; Liu X; Ferkous C; Ma X Biomed Res Int; 2020; 2020():7695207. PubMed ID: 32462017 [TBL] [Abstract][Full Text] [Related]
14. Multi-View Mammographic Density Classification by Dilated and Attention-Guided Residual Learning. Li C; Xu J; Liu Q; Zhou Y; Mou L; Pu Z; Xia Y; Zheng H; Wang S IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):1003-1013. PubMed ID: 32012021 [TBL] [Abstract][Full Text] [Related]
15. A novel multi-view deep learning approach for BI-RADS and density assessment of mammograms. Nguyen HTX; Tran SB; Nguyen DB; Pham HH; Nguyen HQ Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2144-2148. PubMed ID: 36085843 [TBL] [Abstract][Full Text] [Related]
16. Mammographic Breast Density Assessment Using Deep Learning: Clinical Implementation. Lehman CD; Yala A; Schuster T; Dontchos B; Bahl M; Swanson K; Barzilay R Radiology; 2019 Jan; 290(1):52-58. PubMed ID: 30325282 [TBL] [Abstract][Full Text] [Related]
17. Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Yu FH; Miao SM; Li CY; Hang J; Deng J; Ye XH; Liu Y Eur Radiol; 2023 Aug; 33(8):5634-5644. PubMed ID: 36976336 [TBL] [Abstract][Full Text] [Related]
18. Attention-based deep learning for breast lesions classification on contrast enhanced spectral mammography: a multicentre study. Mao N; Zhang H; Dai Y; Li Q; Lin F; Gao J; Zheng T; Zhao F; Xie H; Xu C; Ma H Br J Cancer; 2023 Mar; 128(5):793-804. PubMed ID: 36522478 [TBL] [Abstract][Full Text] [Related]
19. A High-Performance Deep Neural Network Model for BI-RADS Classification of Screening Mammography. Tsai KJ; Chou MC; Li HM; Liu ST; Hsu JH; Yeh WC; Hung CM; Yeh CY; Hwang SH Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161903 [TBL] [Abstract][Full Text] [Related]
20. BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network. Sabani A; Landsmann A; Hejduk P; Schmidt C; Marcon M; Borkowski K; Rossi C; Ciritsis A; Boss A Diagnostics (Basel); 2022 Jun; 12(7):. PubMed ID: 35885470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]