These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 38373376)
1. The effects of iron-based nanomaterials (Fe NMs) on plants under stressful environments: Machine learning-assisted meta-analysis. Hou D; Cui X; Liu M; Qie H; Tang Y; Xu R; Zhao P; Leng W; Luo N; Luo H; Lin A; Wei W; Yang W; Zheng T J Environ Manage; 2024 Mar; 354():120406. PubMed ID: 38373376 [TBL] [Abstract][Full Text] [Related]
2. Foliar Application with Iron Oxide Nanomaterials Stimulate Nitrogen Fixation, Yield, and Nutritional Quality of Soybean. Cao X; Yue L; Wang C; Luo X; Zhang C; Zhao X; Wu F; White JC; Wang Z; Xing B ACS Nano; 2022 Jan; 16(1):1170-1181. PubMed ID: 35023717 [TBL] [Abstract][Full Text] [Related]
3. Metallic oxide nanomaterials act as antioxidant nanozymes in higher plants: Trends, meta-analysis, and prospect. Liu Y; Xiao Z; Chen F; Yue L; Zou H; Lyu J; Wang Z Sci Total Environ; 2021 Aug; 780():146578. PubMed ID: 34030327 [TBL] [Abstract][Full Text] [Related]
4. Ferric Oxide Nanomaterials and Plant-Rhizobacteria Symbionts Cogenerate Iron Plaque for Removing Highly Chlorinated Contaminants in Dryland Soils. Zheng T; Hou J; Wu T; Jin H; Dai Y; Xu J; Yang K; Lin D Environ Sci Technol; 2024 Jun; 58(25):11063-11073. PubMed ID: 38869036 [TBL] [Abstract][Full Text] [Related]
5. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Al-Amri N; Tombuloglu H; Slimani Y; Akhtar S; Barghouthi M; Almessiere M; Alshammari T; Baykal A; Sabit H; Ercan I; Ozcelik S Ecotoxicol Environ Saf; 2020 May; 194():110377. PubMed ID: 32145527 [TBL] [Abstract][Full Text] [Related]
6. Role of nanomaterials in plants under challenging environments. Khan MN; Mobin M; Abbas ZK; AlMutairi KA; Siddiqui ZH Plant Physiol Biochem; 2017 Jan; 110():194-209. PubMed ID: 27269705 [TBL] [Abstract][Full Text] [Related]
7. Meta-analysis of nanomaterials and plants interaction under salinity stress. Kwaslema DR; Michael PS Physiol Plant; 2024; 176(4):e14445. PubMed ID: 39108184 [TBL] [Abstract][Full Text] [Related]
8. Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: A review. Mazarji M; Minkina T; Sushkova S; Mandzhieva S; Bidhendi GN; Barakhov A; Bhatnagar A J Environ Manage; 2021 Apr; 284():112023. PubMed ID: 33540196 [TBL] [Abstract][Full Text] [Related]
9. Recent advances on environmental behavior of Cu-based nanomaterials in soil-plant system: A review. Gao J; Zhu Y; Zeng L; Liu X; Yang Y; Zhou Y J Environ Manage; 2024 Jun; 361():121289. PubMed ID: 38820797 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic investigation of enhanced bacterial soft rot resistance in lettuce (Lactuca sativa L.) with elemental sulfur nanomaterials. Cao X; Liu Y; Luo X; Wang C; Yue L; Elmer W; Dhankher OP; White JC; Wang Z; Xing B Sci Total Environ; 2023 Aug; 884():163793. PubMed ID: 37127166 [TBL] [Abstract][Full Text] [Related]
11. Fe-based nanomaterial transformation to amorphous Fe: Enhanced alfalfa rhizoremediation of PCBs-contaminated soil. Wu T; Liao X; Zou Y; Liu Y; Yang K; White JC; Lin D J Hazard Mater; 2022 Mar; 425():127973. PubMed ID: 34894512 [TBL] [Abstract][Full Text] [Related]
12. Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. An C; Sun C; Li N; Huang B; Jiang J; Shen Y; Wang C; Zhao X; Cui B; Wang C; Li X; Zhan S; Gao F; Zeng Z; Cui H; Wang Y J Nanobiotechnology; 2022 Jan; 20(1):11. PubMed ID: 34983545 [TBL] [Abstract][Full Text] [Related]
13. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. Tarrahi R; Mahjouri S; Khataee A Ecotoxicol Environ Saf; 2021 Jan; 208():111697. PubMed ID: 33396028 [TBL] [Abstract][Full Text] [Related]
14. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives. Gong X; Huang D; Liu Y; Peng Z; Zeng G; Xu P; Cheng M; Wang R; Wan J Crit Rev Biotechnol; 2018 May; 38(3):455-468. PubMed ID: 28903604 [TBL] [Abstract][Full Text] [Related]
15. Metal(loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Song C; Ye F; Zhang H; Hong J; Hua C; Wang B; Chen Y; Ji R; Zhao L Environ Pollut; 2019 Dec; 255(Pt 3):113354. PubMed ID: 31629223 [TBL] [Abstract][Full Text] [Related]
16. Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Zaheer IE; Ali S; Saleem MH; Imran M; Alnusairi GSH; Alharbi BM; Riaz M; Abbas Z; Rizwan M; Soliman MH Plant Physiol Biochem; 2020 Oct; 155():70-84. PubMed ID: 32745932 [TBL] [Abstract][Full Text] [Related]
17. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. Li P; Xia Y; Song K; Liu D Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611512 [TBL] [Abstract][Full Text] [Related]
18. Nanomaterials in plant physiology: Main effects in normal and under temperature stress. Venzhik Y; Deryabin A; Dykman L Plant Sci; 2024 Sep; 346():112148. PubMed ID: 38838991 [TBL] [Abstract][Full Text] [Related]
19. Effects of two Mn-based nanomaterials on soybean antioxidant system and mineral element homeostasis. Jiang Y; Zhou P; Ma T; Adeel M; Shakoor N; Li Y; Li M; Guo M; Rui Y Environ Sci Pollut Res Int; 2023 Feb; 30(7):18880-18889. PubMed ID: 36219299 [TBL] [Abstract][Full Text] [Related]
20. Plant extract-based synthesis of metallic nanomaterials, their applications, and safety concerns. Ullah A; Lim SI Biotechnol Bioeng; 2022 Sep; 119(9):2273-2304. PubMed ID: 35635495 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]