These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38373504)

  • 1. Valorization of organic carbon in primary sludge via semi-continuous dark fermentation: First step to establish a wastewater biorefinery.
    Shylaja Prakash N; Maurer P; Horn H; Hille-Reichel A
    Bioresour Technol; 2024 Apr; 397():130467. PubMed ID: 38373504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale.
    Da Ros C; Conca V; Eusebi AL; Frison N; Fatone F
    Water Res; 2020 May; 174():115633. PubMed ID: 32109752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation.
    Owusu-Agyeman I; Plaza E; Cetecioglu Z
    Waste Manag; 2020 Jul; 112():30-39. PubMed ID: 32497899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of urban waste fermentation for volatile fatty acids production.
    Moretto G; Valentino F; Pavan P; Majone M; Bolzonella D
    Waste Manag; 2019 Jun; 92():21-29. PubMed ID: 31160023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches.
    Wang R; Lv N; Li C; Cai G; Pan X; Li Y; Zhu G
    Water Res; 2021 Apr; 193():116896. PubMed ID: 33571902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valorization of sewage sludge in co-digestion with cheese whey to produce volatile fatty acids.
    Iglesias-Iglesias R; Kennes C; Veiga MC
    Waste Manag; 2020 Dec; 118():541-551. PubMed ID: 32980733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of volatile solids and pH for the production of volatile fatty acids: Batch fermentation tests using sewage sludge.
    Presti D; Cosenza A; Capri FC; Gallo G; Alduina R; Mannina G
    Bioresour Technol; 2021 Dec; 342():125853. PubMed ID: 34536841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing volatile fatty acid production from sewage sludge in batch fermentation tests.
    Mineo A; Di Leto Y; Cosenza A; Capri FC; Gallo G; Alduina R; Ni BJ; Mannina G
    Chemosphere; 2024 Feb; 349():140859. PubMed ID: 38048828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valorization of pretreated waste activated sludge to organic acids and biopolymer.
    Muhorakeye A; Cayetano RD; Kumar AN; Park J; Pandey AK; Kim SH
    Chemosphere; 2022 Sep; 303(Pt 2):135078. PubMed ID: 35644235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of municipal primary sludge: effect of SRT and solids concentration on volatile fatty acid production.
    Bouzas A; Gabaldón C; Marzal P; Penya-Roja JM; Seco A
    Environ Technol; 2002 Aug; 23(8):863-75. PubMed ID: 12211447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of high-concentration volatile fatty acids from wastewater using an acidogenesis-electrodialysis integrated system.
    Pan XR; Li WW; Huang L; Liu HQ; Wang YK; Geng YK; Kwan-Sing Lam P; Yu HQ
    Bioresour Technol; 2018 Jul; 260():61-67. PubMed ID: 29614452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of anaerobic co-fermentation in wastewater treatments plants: A review.
    Perez-Esteban N; Vinardell S; Vidal-Antich C; Peña-Picola S; Chimenos JM; Peces M; Dosta J; Astals S
    Sci Total Environ; 2022 Mar; 813():152498. PubMed ID: 34968594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids.
    Ucisik AS; Henze M
    Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Valorization of sewage sludge for volatile fatty acids production and role of microbiome on acidogenic fermentation.
    Iglesias-Iglesias R; Campanaro S; Treu L; Kennes C; Veiga MC
    Bioresour Technol; 2019 Nov; 291():121817. PubMed ID: 31374412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery.
    Crutchik D; Frison N; Eusebi AL; Fatone F
    Water Res; 2018 Jun; 136():112-119. PubMed ID: 29500972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling.
    Esteban-Gutiérrez M; Garcia-Aguirre J; Irizar I; Aymerich E
    Waste Manag; 2018 Jul; 77():203-212. PubMed ID: 30008410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acidogenic fermentation of iron-enhanced primary sedimentation sludge under different pH conditions for production of volatile fatty acids.
    Lin L; Li XY
    Chemosphere; 2018 Mar; 194():692-700. PubMed ID: 29245135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sewage sludge acidogenic fermentation for organic resource recovery towards carbon neutrality: An experimental survey testing the headspace influence.
    Mineo A; Cosenza A; Mannina G
    Bioresour Technol; 2023 Jan; 367():128217. PubMed ID: 36332859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production.
    Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J
    Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.