BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38373877)

  • 1. In Situ Monitoring of Competitive Coformer Exchange Reaction by
    Hareendran C; Alsirawan B; Paradkar A; Ajithkumar TG
    Mol Pharm; 2024 Mar; 21(3):1479-1489. PubMed ID: 38373877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Cocrystal Formation via In Situ Solid-State NMR.
    Mandala VS; Loewus SJ; Mehta MA
    J Phys Chem Lett; 2014 Oct; 5(19):3340-4. PubMed ID: 26278442
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Majhi D; Stevensson B; Nguyen TM; Edén M
    Phys Chem Chem Phys; 2024 May; 26(19):14345-14363. PubMed ID: 38700003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic analysis of the influence of various external factors on ethenzamide-glutaric acid (1:1) cocrystal formation.
    Kozak A; Pindelska E
    Eur J Pharm Sci; 2019 May; 133():59-68. PubMed ID: 30910648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Look at the Mechanism of Cocrystal Formation and Coformers Exchange in Processes Forced by Mechanical and/or Thermal Stimuli - ex situ and in situ Studies of Low-Melting Eutectic Mixtures.
    Dudek MK; Trzeciak K; Tajber L; Zając J; Kaźmierski S; Pindelska E; Makowski T; Svyntkivska M; Potrzebowski MJ
    Chemistry; 2024 Feb; 30(11):e202302138. PubMed ID: 37957130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: Caffeine/maleic acid.
    Aher S; Dhumal R; Mahadik K; Paradkar A; York P
    Eur J Pharm Sci; 2010 Dec; 41(5):597-602. PubMed ID: 20801215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms by which moisture generates cocrystals.
    Jayasankar A; Good DJ; Rodríguez-Hornedo N
    Mol Pharm; 2007; 4(3):360-72. PubMed ID: 17488034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state NMR studies of theophylline co-crystals with dicarboxylic acids.
    Pindelska E; Sokal A; Szeleszczuk L; Pisklak DM; Kolodziejski W
    J Pharm Biomed Anal; 2014 Nov; 100():322-328. PubMed ID: 25194346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical Analysis and Optimization of Stoichiometric Ratio of Drug-Coformer on Cocrystal Design: Molecular Docking, In Vitro and In Vivo Assessment.
    Dhibar M; Chakraborty S; Basak S; Pattanayak P; Chatterjee T; Ghosh B; Raafat M; Abourehab MAS
    Pharmaceuticals (Basel); 2023 Feb; 16(2):. PubMed ID: 37259428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical stability enhancement of theophylline via cocrystallization.
    Trask AV; Motherwell WD; Jones W
    Int J Pharm; 2006 Aug; 320(1-2):114-23. PubMed ID: 16769188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A
    Vigilante NJ; Mehta MA
    Acta Crystallogr C Struct Chem; 2017 Mar; 73(Pt 3):234-243. PubMed ID: 28257018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Quantification of Cocrystals in Pharmaceutical Tablets Using Transmission Low-Frequency Raman Spectroscopy.
    Inoue M; Osada T; Hisada H; Koide T; Fukami T; Roy A; Carriere J; Heyler R
    Anal Chem; 2019 Nov; 91(21):13427-13432. PubMed ID: 31565923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of 1-Hydroxy-4,5-Dimethyl-Imidazole 3-Oxide as Coformer in Formation of Pharmaceutical Cocrystals.
    Wróblewska A; Śniechowska J; Kaźmierski S; Wielgus E; Bujacz GD; Mlostoń G; Chworos A; Suwara J; Potrzebowski MJ
    Pharmaceutics; 2020 Apr; 12(4):. PubMed ID: 32326428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative Monitoring of Cocrystal Polymorphisms in Model Tablets Using Transmission Low-Frequency Raman Spectroscopy.
    Inoue M; Osada T; Hisada H; Koide T; Fukami T; Roy A; Carriere J
    J Pharm Sci; 2023 Jan; 112(1):225-229. PubMed ID: 36126759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Insight into Caffeine-Oxalic Cocrystal Dissociation in Formulations: Role of Excipients.
    Duggirala NK; Vyas A; Krzyzaniak JF; Arora KK; Suryanarayanan R
    Mol Pharm; 2017 Nov; 14(11):3879-3887. PubMed ID: 28990387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Coformer Stoichiometric Ratio on Pharmaceutical Cocrystal Dissolution: Three Cocrystals of Carbamazepine/4-Aminobenzoic Acid.
    Li Z; Matzger AJ
    Mol Pharm; 2016 Mar; 13(3):990-5. PubMed ID: 26837376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of in situ atomic force microscopy to follow phase changes at crystal surfaces in real time.
    Thakuria R; Eddleston MD; Chow EH; Lloyd GO; Aldous BJ; Krzyzaniak JF; Bond AD; Jones W
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10541-4. PubMed ID: 23955996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals.
    Ren S; Liu M; Hong C; Li G; Sun J; Wang J; Zhang L; Xie Y
    Acta Pharm Sin B; 2019 Jan; 9(1):59-73. PubMed ID: 30766778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid State NMR Characterization of Ibuprofen:Nicotinamide Cocrystals and New Idea for Controlling Release of Drugs Embedded into Mesoporous Silica Particles.
    Skorupska E; Kaźmierski S; Potrzebowski MJ
    Mol Pharm; 2017 May; 14(5):1800-1810. PubMed ID: 28403609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms.
    Eddleston MD; Madusanka N; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2865-2870. PubMed ID: 24824298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.