These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3837416)

  • 1. Isolation of methyl 3-hydroxy-9-oxo-9,10-seco-23,24-dinor-1,3,5(10)-cholatrienoate from a sterol bioconversion.
    Knight JC; Wovcha MG
    Steroids; 1985; 46(2-3):789-96. PubMed ID: 3837416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial degradation of the phytosterol side-chain to 24-oxo products.
    Knight JC; Wovcha MG
    Steroids; 1980 Dec; 36(6):723-30. PubMed ID: 7210061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma.
    McDonald JG; Smith DD; Stiles AR; Russell DW
    J Lipid Res; 2012 Jul; 53(7):1399-409. PubMed ID: 22517925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A product of ozonolysis of cholesterol alters the biophysical properties of phosphatidylethanolamine membranes.
    Wachtel E; Bach D; Epand RF; Tishbee A; Epand RM
    Biochemistry; 2006 Jan; 45(4):1345-51. PubMed ID: 16430232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial degradation of sterols.
    Marsheck WJ; Kraychy S; Muir RD
    Appl Microbiol; 1972 Jan; 23(1):72-7. PubMed ID: 5059623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of sterols and triterpenes by mycobacteria. I Formation of progesterone and 1-dehydroprogesterone from Mycobacterium aurum, strain A+.
    Prome D; Lacave C; Monsarrat B; David H; Prome JC
    Biochim Biophys Acta; 1983 Aug; 753(1):60-4. PubMed ID: 6882787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A catecholic 9,10-seco steroid as a product of aerobic catabolism of cholic acid by a Pseudomonas sp.
    Park RJ; Dunn NW; Ide JA
    Steroids; 1986; 48(5-6):439-50. PubMed ID: 3445293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic fate of cholesteryl methyl ether in Mycobacterium phlei.
    Büki KG; Ambrus G; Horváth G
    Acta Microbiol Acad Sci Hung; 1975; 22(4):447-51. PubMed ID: 818881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New product identification in the sterol metabolism by an industrial strain Mycobacterium neoaurum NRRL B-3805.
    Li X; Chen X; Wang Y; Yao P; Zhang R; Feng J; Wu Q; Zhu D; Ma Y
    Steroids; 2018 Apr; 132():40-45. PubMed ID: 29427574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial transformation of 13-ethyl-3-methoxy-8,14-seco-gona-1,3,5(10),9(11)-tetraene-14, 17-dione to its 17-beta hydroxy derivative by Pichia farinosa in pilot plant fermentors.
    Mehdi I; Mandwal AK; Bhatia MC
    Indian J Exp Biol; 1989 Aug; 27(8):742-3. PubMed ID: 2633985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum.
    Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR
    Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Conversion of androstenedione and androstadienedione by sterol-degrading bacteria].
    Voĭshvillo NE; Andriushina VA; Savinova TS; Stytsenko TS
    Prikl Biokhim Mikrobiol; 2004; 40(5):536-43. PubMed ID: 15553785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 9,10-secosteroids, protein kinase inhibitors from the Chinese gorgonian Astrogorgia sp.
    Lai D; Yu S; van Ofwegen L; Totzke F; Proksch P; Lin W
    Bioorg Med Chem; 2011 Nov; 19(22):6873-80. PubMed ID: 21982797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cholest-4-en-26-ol-3-one and cholesta-1,4-dien-26-ol-3-one as conponents of a new microbiologically formed type of ester].
    Schubert K; Kaufmann G; Budzikiewicz H
    Biochim Biophys Acta; 1969 Jan; 176(1):170-7. PubMed ID: 5766015
    [No Abstract]   [Full Text] [Related]  

  • 15. Rings D-seco and B,D-seco tetranortriterpenoids from root bark of Entandrophragma angolense.
    Nsiama TK; Okamura H; Hamada T; Morimoto Y; Doe M; Iwagawa T; Nakatani M
    Phytochemistry; 2011 Oct; 72(14-15):1854-8. PubMed ID: 21742354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization and metabolism of methyl-sterol derivatives in the yeast mutant strain GL7.
    Buttke TM; Bloch K
    Biochemistry; 1981 May; 20(11):3267-72. PubMed ID: 7018572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of newly synthesized detergents in the side chain degradation of plant sterols by Mycobacterium fortuitum.
    Atrat PG; Koch B; Szekalla B; Hörhold-Schubert C
    J Basic Microbiol; 1992; 32(3):147-57. PubMed ID: 1512705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes.
    Xiong LB; Liu HH; Xu LQ; Sun WJ; Wang FQ; Wei DZ
    Microb Cell Fact; 2017 May; 16(1):89. PubMed ID: 28532497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sterols of ketoconazole-inhibited Leishmania mexicana mexicana promastigotes.
    Goad LJ; Holz GG; Beach DH
    Mol Biochem Parasitol; 1985 Jun; 15(3):257-79. PubMed ID: 4033689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis.
    Wrońska N; Brzostek A; Szewczyk R; Soboń A; Dziadek J; Lisowska K
    Molecules; 2016 May; 21(5):. PubMed ID: 27164074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.