These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38374727)

  • 1. Recent Advances in Reversible Liquid Organic Hydrogen Carrier Systems: From Hydrogen Carriers to Catalysts.
    Zhou MJ; Miao Y; Gu Y; Xie Y
    Adv Mater; 2024 Feb; ():e2311355. PubMed ID: 38374727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reversible Liquid-to-Liquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol.
    Zhou QQ; Zou YQ; Ben-David Y; Milstein D
    Chemistry; 2020 Dec; 26(67):15487-15490. PubMed ID: 33459426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport.
    Le TH; Tran N; Lee HJ
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.
    Preuster P; Papp C; Wasserscheid P
    Acc Chem Res; 2017 Jan; 50(1):74-85. PubMed ID: 28004916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation.
    Hu P; Fogler E; Diskin-Posner Y; Iron MA; Milstein D
    Nat Commun; 2015 Apr; 6():6859. PubMed ID: 25882348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers.
    Abdin Z; Tang C; Liu Y; Catchpole K
    iScience; 2021 Sep; 24(9):102966. PubMed ID: 34466789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in liquid organic hydrogen carriers: developing efficient dehydrogenation strategies.
    Tan R; Ji Q; Ling Y; Li L
    Chem Commun (Camb); 2024 Jul; ():. PubMed ID: 38994588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation.
    Shao Z; Li Y; Liu C; Ai W; Luo SP; Liu Q
    Nat Commun; 2020 Jan; 11(1):591. PubMed ID: 32001679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamics of reversible hydrogen storage: Does alkoxy-substitution of naphthalene yield functional advantages for LOHC systems?
    Verevkin SP; Samarov AA; Vostrikov SV
    J Chem Phys; 2024 Apr; 160(15):. PubMed ID: 38629611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.
    Dürr S; Müller M; Jorschick H; Helmin M; Bösmann A; Palkovits R; Wasserscheid P
    ChemSusChem; 2017 Jan; 10(1):42-47. PubMed ID: 27335155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Catalysts in N-Heterocycles and Aromatics as Liquid Organic Hydrogen Carriers (LOHCs): History, Present Status and Future.
    Zhang J; Yang F; Wang B; Li D; Wei M; Fang T; Zhang Z
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Reversible Liquid Organic Hydrogen Carrier System Based on Methanol-Ethylenediamine and Ethylene Urea.
    Xie Y; Hu P; Ben-David Y; Milstein D
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):5105-5109. PubMed ID: 30791196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically Activatable Liquid Organic Hydrogen Carriers and Their Applications.
    Cho J; Kim B; Venkateshalu S; Chung DY; Lee K; Choi SI
    J Am Chem Soc; 2023 Aug; 145(31):16951-16965. PubMed ID: 37439128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iridium-Catalyzed Dehydrogenation in a Continuous Flow Reactor for Practical On-Board Hydrogen Generation From Liquid Organic Hydrogen Carriers.
    Polukeev AV; Wallenberg R; Uhlig J; Hulteberg CP; Wendt OF
    ChemSusChem; 2022 Apr; 15(8):e202200085. PubMed ID: 35263025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of hydrogen from alcohols
    Bisarya A; Karim S; Narjinari H; Banerjee A; Arora V; Dhole S; Dutta A; Kumar A
    Chem Commun (Camb); 2024 Apr; 60(31):4148-4169. PubMed ID: 38563372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrification of Selective Catalytic Liquid Organic Hydrogen Carriers: Hydrogenation and Dehydrogenation Reactions.
    Sedminek A; Likozar B; Gyergyek S
    ACS Omega; 2024 Feb; 9(6):6027-6035. PubMed ID: 38371759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review.
    Acharya D; Ng D; Xie Z
    Membranes (Basel); 2021 Dec; 11(12):. PubMed ID: 34940456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rare earth hydride supported ruthenium catalyst for the hydrogenation of
    Wu Y; Yu H; Guo Y; Jiang X; Qi Y; Sun B; Li H; Zheng J; Li X
    Chem Sci; 2019 Dec; 10(45):10459-10465. PubMed ID: 32190238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic toxicity, bioaccumulation potential, and human estrogen/androgen activity of three oxo-Liquid Organic Hydrogen Carrier (oxo-LOHC) systems.
    Seol Y; Markiewicz M; Beil S; Schubert S; Jungmann D; Wasserscheid P; Stolte S
    J Hazard Mater; 2024 Jul; 476():135102. PubMed ID: 39003805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic Dehydrogenative Coupling of Hydrosilanes with Alcohols for the Production of Hydrogen On-demand: Application of a Silane/Alcohol Pair as a Liquid Organic Hydrogen Carrier.
    Ventura-Espinosa D; Carretero-Cerdán A; Baya M; García H; Mata JA
    Chemistry; 2017 Aug; 23(45):10815-10821. PubMed ID: 28745407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.