These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38374801)

  • 101. Characterization of potato (Solanum tuberosum) and tomato (Solanum lycopersicum) protein phosphatases type 2A catalytic subunits and their involvement in stress responses.
    País SM; González MA; Téllez-Iñón MT; Capiati DA
    Planta; 2009 Jun; 230(1):13-25. PubMed ID: 19330349
    [TBL] [Abstract][Full Text] [Related]  

  • 102. StRAP2.3, an ERF-VII transcription factor, directly activates StInvInh2 to enhance cold-induced sweetening resistance in potato.
    Shi W; Song Y; Liu T; Ma Q; Yin W; Shen Y; Liu T; Jiang C; Zhang K; Lv D; Song B; Wang J; Liu X
    Hortic Res; 2021 Apr; 8(1):82. PubMed ID: 33790269
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage.
    Yang Y; Qiang X; Owsiany K; Zhang S; Thannhauser TW; Li L
    J Proteome Res; 2011 Oct; 10(10):4647-60. PubMed ID: 21842911
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Generation of transgene-free PDS mutants in potato by Agrobacterium-mediated transformation.
    Bánfalvi Z; Csákvári E; Villányi V; Kondrák M
    BMC Biotechnol; 2020 May; 20(1):25. PubMed ID: 32398038
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Prospects for potato genome editing to engineer resistance against viruses and cold-induced sweetening.
    Hameed A; Mehmood MA; Shahid M; Fatma S; Khan A; Ali S
    GM Crops Food; 2020 Oct; 11(4):185-205. PubMed ID: 31280681
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing.
    Chincinska IA; Miklaszewska M; Sołtys-Kalina D
    Planta; 2022 Dec; 257(1):25. PubMed ID: 36562862
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato.
    Zhu X; Chen A; Butler NM; Zeng Z; Xin H; Wang L; Lv Z; Eshel D; Douches DS; Jiang J
    Plant Cell; 2024 May; 36(5):1985-1999. PubMed ID: 38374801
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato.
    Bhaskar PB; Wu L; Busse JS; Whitty BR; Hamernik AJ; Jansky SH; Buell CR; Bethke PC; Jiang J
    Plant Physiol; 2010 Oct; 154(2):939-48. PubMed ID: 20736383
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin.
    Wiberley-Bradford AE; Busse JS; Jiang J; Bethke PC
    BMC Res Notes; 2014 Nov; 7():801. PubMed ID: 25399251
    [TBL] [Abstract][Full Text] [Related]  

  • 110. An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity.
    Teper-Bamnolker P; Roitman M; Katar O; Peleg N; Aruchamy K; Suher S; Doron-Faigenboim A; Leibman D; Omid A; Belausov E; Andersson M; Olsson N; Fält AS; Volpin H; Hofvander P; Gal-On A; Eshel D
    Plant J; 2023 Jan; 113(2):327-341. PubMed ID: 36448213
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Distinct cold responsiveness of a StInvInh2 gene promoter in transgenic potato tubers with contrasting resistance to cold-induced sweetening.
    Liu X; Shi W; Yin W; Wang J
    Plant Physiol Biochem; 2017 Feb; 111():77-84. PubMed ID: 27915175
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Suppression of the vacuolar invertase gene delays senescent sweetening in chipping potatoes.
    Wiberley-Bradford AE; Bethke PC
    J Sci Food Agric; 2018 Jan; 98(1):354-360. PubMed ID: 28597466
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Dynamics of
    Fang C; Yang M; Tang Y; Zhang L; Zhao H; Ni H; Chen Q; Meng F; Jiang J
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2303836120. PubMed ID: 37871213
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants.
    Zhang H; Liu S; Ren T; Niu M; Liu X; Liu C; Wang H; Yin W; Xia X
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901852
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide.
    Ly DNP; Iqbal S; Fosu-Nyarko J; Milroy S; Jones MGK
    Plants (Basel); 2023 Jan; 12(2):. PubMed ID: 36679094
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Identification and functional validation of super-enhancers in
    Zhao H; Yang M; Bishop J; Teng Y; Cao Y; Beall BD; Li S; Liu T; Fang Q; Fang C; Xin H; Nützmann HW; Osbourn A; Meng F; Jiang J
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2215328119. PubMed ID: 36409894
    [TBL] [Abstract][Full Text] [Related]  

  • 117.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 118.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 119.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 120.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.