These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38374902)
1. Digital mammography dataset for breast cancer diagnosis research (DMID) with breast mass segmentation analysis. Oza P; Oza U; Oza R; Sharma P; Patel S; Kumar P; Gohel B Biomed Eng Lett; 2024 Mar; 14(2):317-330. PubMed ID: 38374902 [No Abstract] [Full Text] [Related]
2. Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network. Zhou Y; Wei J; Wu D; Zhang Y Front Oncol; 2022; 12():868257. PubMed ID: 35574397 [TBL] [Abstract][Full Text] [Related]
3. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation. Keller BM; Nathan DL; Wang Y; Zheng Y; Gee JC; Conant EF; Kontos D Med Phys; 2012 Aug; 39(8):4903-17. PubMed ID: 22894417 [TBL] [Abstract][Full Text] [Related]
4. Efficient Breast Cancer Diagnosis from Complex Mammographic Images Using Deep Convolutional Neural Network. Rahman H; Naik Bukht TF; Ahmad R; Almadhor A; Javed AR Comput Intell Neurosci; 2023; 2023():7717712. PubMed ID: 36909966 [TBL] [Abstract][Full Text] [Related]
5. Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques. Baccouche A; Garcia-Zapirain B; Zheng Y; Elmaghraby AS Comput Methods Programs Biomed; 2022 Jun; 221():106884. PubMed ID: 35594582 [TBL] [Abstract][Full Text] [Related]
6. A Review of Computer-Aided Breast Cancer Diagnosis Using Sequential Mammograms. Loizidou K; Skouroumouni G; Nikolaou C; Pitris C Tomography; 2022 Dec; 8(6):2874-2892. PubMed ID: 36548533 [TBL] [Abstract][Full Text] [Related]
7. Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram. Al-Antari MA; Al-Masni MA; Kim TS Adv Exp Med Biol; 2020; 1213():59-72. PubMed ID: 32030663 [TBL] [Abstract][Full Text] [Related]
8. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964 [TBL] [Abstract][Full Text] [Related]
10. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154 [TBL] [Abstract][Full Text] [Related]
11. MOB-CBAM: A dual-channel attention-based deep learning generalizable model for breast cancer molecular subtypes prediction using mammograms. Nissar I; Alam S; Masood S; Kashif M Comput Methods Programs Biomed; 2024 May; 248():108121. PubMed ID: 38531147 [TBL] [Abstract][Full Text] [Related]
12. CAD May Not be Necessary for Microcalcifications in the Digital era, CAD May Benefit Radiologists for Masses. Destounis SV; Arieno AL; Morgan RC J Clin Imaging Sci; 2012; 2():45. PubMed ID: 22919559 [TBL] [Abstract][Full Text] [Related]
13. Detection and Weak Segmentation of Masses in Gray-Scale Breast Mammogram Images Using Deep Learning. Kim YJ; Kim KG Yonsei Med J; 2022 Jan; 63(Suppl):S63-S73. PubMed ID: 35040607 [TBL] [Abstract][Full Text] [Related]
14. Presegmenter Cascaded Framework for Mammogram Mass Segmentation. Oza U; Gohel B; Kumar P; Oza P Int J Biomed Imaging; 2024; 2024():9422083. PubMed ID: 39155940 [TBL] [Abstract][Full Text] [Related]
15. Geometry-Based Pectoral Muscle Segmentation From MLO Mammogram Views. Taghanaki SA; Liu Y; Miles B; Hamarneh G IEEE Trans Biomed Eng; 2017 Nov; 64(11):2662-2671. PubMed ID: 28129144 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Al-Masni MA; Al-Antari MA; Park JM; Gi G; Kim TY; Rivera P; Valarezo E; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Apr; 157():85-94. PubMed ID: 29477437 [TBL] [Abstract][Full Text] [Related]
17. Learning from adversarial medical images for X-ray breast mass segmentation. Shen T; Gou C; Wang FY; He Z; Chen W Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601 [TBL] [Abstract][Full Text] [Related]
18. Automated pectoral muscle identification on MLO-view mammograms: Comparison of deep neural network to conventional computer vision. Ma X; Wei J; Zhou C; Helvie MA; Chan HP; Hadjiiski LM; Lu Y Med Phys; 2019 May; 46(5):2103-2114. PubMed ID: 30771257 [TBL] [Abstract][Full Text] [Related]
19. Adaptive hysteresis thresholding segmentation technique for localizing the breast masses in the curve stitching domain. Mughal B; Muhammad N; Sharif M Int J Med Inform; 2019 Jun; 126():26-34. PubMed ID: 31029261 [TBL] [Abstract][Full Text] [Related]
20. A New Breast Border Extraction and Contrast Enhancement Technique with Digital Mammogram Images for Improved Detection of Breast Cancer. Hazarika M; Mahanta LB Asian Pac J Cancer Prev; 2018 Aug; 19(8):2141-2148. PubMed ID: 30139217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]