These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 38375331)

  • 21. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo.
    Bolus MF; Willats AA; Whitmire CJ; Rozell CJ; Stanley GB
    J Neural Eng; 2018 Apr; 15(2):026011. PubMed ID: 29300002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-reorganization of neuronal activation patterns in the cortex under brain-machine interface and neural operant conditioning.
    Ito H; Fujiki S; Mori Y; Kansaku K
    Neurosci Res; 2020 Jul; 156():279-292. PubMed ID: 32243900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 24. Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light.
    Liu YZ; Renteria C; Courtney CD; Ibrahim B; You S; Chaney EJ; Barkalifa R; Iyer RR; Zurauskas M; Tu H; Llano DA; Christian-Hinman CA; Boppart SA
    Neurophotonics; 2020 Oct; 7(4):045007. PubMed ID: 33163545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fast intracortical brain-machine interface with patterned optogenetic feedback.
    Abbasi A; Goueytes D; Shulz DE; Ego-Stengel V; Estebanez L
    J Neural Eng; 2018 Aug; 15(4):046011. PubMed ID: 29616982
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanowire electrodes for high-density stimulation and measurement of neural circuits.
    Robinson JT; Jorgolli M; Park H
    Front Neural Circuits; 2013; 7():38. PubMed ID: 23486552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anti-artifacts techniques for neural recording front-ends in closed-loop brain-machine interface ICs.
    Chen W; Liu X; Wan P; Chen Z; Chen Y
    Front Neurosci; 2024; 18():1393206. PubMed ID: 38784093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep brain-machine interfaces: sensing and modulating the human deep brain.
    Sui Y; Yu H; Zhang C; Chen Y; Jiang C; Li L
    Natl Sci Rev; 2022 Oct; 9(10):nwac212. PubMed ID: 36644311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
    Chou Z; Lim J; Brown S; Keller M; Bugbee J; Broccard F; Khraiche ML; Silva GA; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3949-52. PubMed ID: 26737158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aberration-free holographic microscope for simultaneous imaging and stimulation of neuronal populations.
    Shymkiv Y; Yuste R
    Opt Express; 2023 Sep; 31(20):33461-33474. PubMed ID: 37859128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical imaging and manipulation of sleeping-brain dynamics in memory processing.
    Miyamoto D
    Neurosci Res; 2022 Aug; 181():9-16. PubMed ID: 35439575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of optical resolution to the spatial precision of two-photon optogenetic photostimulation
    Lees RM; Pichler B; Packer AM
    Neurophotonics; 2024 Jan; 11(1):015006. PubMed ID: 38322022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional multi-site random access photostimulation (3D-MAP).
    Xue Y; Waller L; Adesnik H; Pégard N
    Elife; 2022 Feb; 11():. PubMed ID: 35156923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-vitro validation of a closed-loop optogenetic stimulation device.
    Edward ES; Kouzani AZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1130-1133. PubMed ID: 29060074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breaking trade-offs: Development of fast, high-resolution, wide-field two-photon microscopes to reveal the computational principles of the brain.
    Ota K; Uwamori H; Ode T; Murayama M
    Neurosci Res; 2022 Jun; 179():3-14. PubMed ID: 35390357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution optogenetics in space and time.
    Fernandez-Ruiz A; Oliva A; Chang H
    Trends Neurosci; 2022 Nov; 45(11):854-864. PubMed ID: 36192264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast z-focus controlling and multiplexing strategies for multiplane two-photon imaging of neural dynamics.
    Ito KN; Isobe K; Osakada F
    Neurosci Res; 2022 Jun; 179():15-23. PubMed ID: 35369991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.
    Zrenner C; Belardinelli P; Müller-Dahlhaus F; Ziemann U
    Front Cell Neurosci; 2016; 10():92. PubMed ID: 27092055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An experimental platform to study the closed-loop performance of brain-machine interfaces.
    Ejaz N; Peterson KD; Krapp HG
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Future of Neural Interfaces.
    Laiwalla F; Nurmikko A
    Adv Exp Med Biol; 2019; 1101():225-241. PubMed ID: 31729678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.