These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 38375331)

  • 61. Volumetric Imaging of Neural Activity by Light Field Microscopy.
    Bai L; Zhang Z; Ye L; Cong L; Zhao Y; Zhang T; Shi Z; Wang K
    Neurosci Bull; 2022 Dec; 38(12):1559-1568. PubMed ID: 35939199
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advances in adaptive optics-based two-photon fluorescence microscopy for brain imaging.
    Sahu P; Mazumder N
    Lasers Med Sci; 2020 Mar; 35(2):317-328. PubMed ID: 31729608
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Closed-Loop Neural Prostheses With On-Chip Intelligence: A Review and a Low-Latency Machine Learning Model for Brain State Detection.
    Zhu B; Shin U; Shoaran M
    IEEE Trans Biomed Circuits Syst; 2021 Oct; 15(5):877-897. PubMed ID: 34529573
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Hybrid Electrical and Optical Neural Interfaces.
    Ramezani Z; Seo KJ; Fang H
    J Micromech Microeng; 2021 Apr; 31(4):. PubMed ID: 34177136
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optogenetic feedback control of neural activity.
    Newman JP; Fong MF; Millard DC; Whitmire CJ; Stanley GB; Potter SM
    Elife; 2015 Jul; 4():e07192. PubMed ID: 26140329
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Optogenetics for controlling seizure circuits for translational approaches.
    Ledri M; Andersson M; Wickham J; Kokaia M
    Neurobiol Dis; 2023 Aug; 184():106234. PubMed ID: 37479090
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Landscape and future directions of machine learning applications in closed-loop brain stimulation.
    Chandrabhatla AS; Pomeraniec IJ; Horgan TM; Wat EK; Ksendzovsky A
    NPJ Digit Med; 2023 Apr; 6(1):79. PubMed ID: 37106034
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience.
    Mussa-Ivaldi FA; Miller LE
    Trends Neurosci; 2003 Jun; 26(6):329-34. PubMed ID: 12798603
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Optimal Multichannel Artifact Prediction and Removal for Neural Stimulation and Brain Machine Interfaces.
    Sadeghi Najafabadi M; Chen L; Dutta K; Norris A; Feng B; Schnupp JWH; Rosskothen-Kuhl N; Read HL; Escabí MA
    Front Neurosci; 2020; 14():709. PubMed ID: 32765212
    [TBL] [Abstract][Full Text] [Related]  

  • 70. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation.
    Paluch-Siegler S; Mayblum T; Dana H; Brosh I; Gefen I; Shoham S
    Neurophotonics; 2015 Jul; 2(3):031208. PubMed ID: 26217673
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A Mechanically Flexible, Implantable Neural Interface for Computational Imaging and Optogenetic Stimulation Over 5.4×5.4mm
    Moazeni S; Pollmann E; Boominathan V; Cardoso FA; Robinson J; Veeraraghavan A; Shepard K
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1295-1305. PubMed ID: 34951854
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Closed-loop Modulation of the Self-regulating Brain: A Review on Approaches, Emerging Paradigms, and Experimental Designs.
    Farkhondeh Tale Navi F; Heysieattalab S; Ramanathan DS; Raoufy MR; Nazari MA
    Neuroscience; 2022 Feb; 483():104-126. PubMed ID: 34902494
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Comprehensive Imaging of Sensory-Evoked Activity of Entire Neurons Within the Awake Developing Brain Using Ultrafast AOD-Based Random-Access Two-Photon Microscopy.
    Sakaki KDR; Podgorski K; Dellazizzo Toth TA; Coleman P; Haas K
    Front Neural Circuits; 2020; 14():33. PubMed ID: 32612514
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Real-Time Image Processing Toolbox for All-Optical Closed-Loop Control of Neuronal Activities.
    Sheng W; Zhao X; Huang X; Yang Y
    Front Cell Neurosci; 2022; 16():917713. PubMed ID: 35865111
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation.
    Yang Y; Connolly AT; Shanechi MM
    J Neural Eng; 2018 Dec; 15(6):066007. PubMed ID: 30221624
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On-Probe Neural Interface ASIC for Combined Electrical Recording and Optogenetic Stimulation.
    Ramezani R; Liu Y; Dehkhoda F; Soltan A; Haci D; Zhao H; Firfilionis D; Hazra A; Cunningham MO; Jackson A; Constandinou TG; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):576-588. PubMed ID: 29877821
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Brain-machine interfaces beyond neuroprosthetics.
    Moxon KA; Foffani G
    Neuron; 2015 Apr; 86(1):55-67. PubMed ID: 25856486
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Motor cortical decoding performance depends on controlled system order.
    Matlack C; Haddock A; Moritz CT; Chizeck HJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2553-6. PubMed ID: 25570511
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain.
    Vandekerckhove B; Missinne J; Vonck K; Bauwens P; Verplancke R; Boon P; Raedt R; Vanfleteren J
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396287
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.