These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38375358)
1. Zhang Y; Liu T; Qu ZJ; Wang X; Song WG; Guo SD Cardiovasc Ther; 2024; 2024():8649365. PubMed ID: 38375358 [TBL] [Abstract][Full Text] [Related]
2. Fucoidan A2 from the Brown Seaweed Ascophyllum nodosum Lowers Lipid by Improving Reverse Cholesterol Transport in C57BL/6J Mice Fed a High-Fat Diet. Yang Z; Liu G; Wang Y; Yin J; Wang J; Xia B; Li T; Yang X; Hou P; Hu S; Song W; Guo S J Agric Food Chem; 2019 May; 67(20):5782-5791. PubMed ID: 31055921 [TBL] [Abstract][Full Text] [Related]
3. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. Yang Z; Yin J; Wang Y; Wang J; Xia B; Li T; Yang X; Hu S; Ji C; Guo S Int J Biol Macromol; 2019 Aug; 134():759-769. PubMed ID: 31100394 [TBL] [Abstract][Full Text] [Related]
4. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Yin J; Wang J; Li F; Yang Z; Yang X; Sun W; Xia B; Li T; Song W; Guo S Food Funct; 2019 Aug; 10(8):5124-5139. PubMed ID: 31364648 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of the hypolipidemic effects and mechanisms of action of Liu T; Wang X; Wang YM; Sui FR; Zhang XY; Liu HD; Ma DY; Liu XX; Guo SD Food Funct; 2024 Jun; 15(11):5955-5971. PubMed ID: 38738998 [TBL] [Abstract][Full Text] [Related]
6. [Electroacupuncture mitigates hyperlipidemia via improving cholesterol metabolism mediated by SCAP/SREBP-2 signaling in liver tissue in rats]. Wu H; Zhang ZQ; Chen L; Liao S; Wang XF; Lin W Zhen Ci Yan Jiu; 2023 Apr; 48(4):325-30. PubMed ID: 37186195 [TBL] [Abstract][Full Text] [Related]
7. Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. Park J; Yeom M; Hahm DH J Pharmacol Sci; 2016 Jun; 131(2):84-92. PubMed ID: 27094367 [TBL] [Abstract][Full Text] [Related]
8. Rosmarinic Acid Exhibits a Lipid-Lowering Effect by Modulating the Expression of Reverse Cholesterol Transporters and Lipid Metabolism in High-Fat Diet-Fed Mice. Nyandwi JB; Ko YS; Jin H; Yun SP; Park SW; Kim HJ Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680102 [TBL] [Abstract][Full Text] [Related]
9. Petroleum ether sub-fraction of rosemary extract improves hyperlipidemia and insulin resistance by inhibiting SREBPs. Xie ZS; Zhong LJ; Wan XM; Li MN; Yang H; Li P; Xu XJ Chin J Nat Med; 2016 Oct; 14(10):746-756. PubMed ID: 28236404 [TBL] [Abstract][Full Text] [Related]
10. Naringin Activates AMPK Resulting in Altered Expression of SREBPs, PCSK9, and LDLR To Reduce Body Weight in Obese C57BL/6J Mice. Sui GG; Xiao HB; Lu XY; Sun ZL J Agric Food Chem; 2018 Aug; 66(34):8983-8990. PubMed ID: 30092639 [TBL] [Abstract][Full Text] [Related]
11. Anti-hyperlipidemic effect of rice bran polysaccharide and its potential mechanism in high-fat diet mice. Nie Y; Luo F; Wang L; Yang T; Shi L; Li X; Shen J; Xu W; Guo T; Lin Q Food Funct; 2017 Nov; 8(11):4028-4041. PubMed ID: 28869259 [TBL] [Abstract][Full Text] [Related]
12. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Ide T; Shimano H; Yoshikawa T; Yahagi N; Amemiya-Kudo M; Matsuzaka T; Nakakuki M; Yatoh S; Iizuka Y; Tomita S; Ohashi K; Takahashi A; Sone H; Gotoda T; Osuga J; Ishibashi S; Yamada N Mol Endocrinol; 2003 Jul; 17(7):1255-67. PubMed ID: 12730332 [TBL] [Abstract][Full Text] [Related]
13. Hypolipidemic effect of fucoidan from Laminaria japonica in hyperlipidemic rats. Huang L; Wen K; Gao X; Liu Y Pharm Biol; 2010 Apr; 48(4):422-6. PubMed ID: 20645721 [TBL] [Abstract][Full Text] [Related]
14. Tormentic acid, a major component of suspension cells of Eriobotrya japonica, suppresses high-fat diet-induced diabetes and hyperlipidemia by glucose transporter 4 and AMP-activated protein kinase phosphorylation. Wu JB; Kuo YH; Lin CH; Ho HY; Shih CC J Agric Food Chem; 2014 Nov; 62(44):10717-26. PubMed ID: 25317836 [TBL] [Abstract][Full Text] [Related]
15. Ezetimibe promotes CYP7A1 and modulates PPARs as a compensatory mechanism in LDL receptor-deficient hamsters. Xia B; Lin P; Ji Y; Yin J; Wang J; Yang X; Li T; Yang Z; Li F; Guo S Lipids Health Dis; 2020 Feb; 19(1):24. PubMed ID: 32035489 [TBL] [Abstract][Full Text] [Related]
16. Dietary phosphate restriction induces hepatic lipid accumulation through dysregulation of cholesterol metabolism in mice. Tanaka S; Yamamoto H; Nakahashi O; Kagawa T; Ishiguro M; Masuda M; Kozai M; Ikeda S; Taketani Y; Takeda E Nutr Res; 2013 Jul; 33(7):586-93. PubMed ID: 23827134 [TBL] [Abstract][Full Text] [Related]
17. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β. Hoang MH; Jia Y; Mok B; Jun HJ; Hwang KY; Lee SJ J Nutr Biochem; 2015 Aug; 26(8):868-75. PubMed ID: 25959373 [TBL] [Abstract][Full Text] [Related]
18. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. I. PPARs suppress sterol regulatory element binding protein-1c promoter through inhibition of LXR signaling. Yoshikawa T; Ide T; Shimano H; Yahagi N; Amemiya-Kudo M; Matsuzaka T; Yatoh S; Kitamine T; Okazaki H; Tamura Y; Sekiya M; Takahashi A; Hasty AH; Sato R; Sone H; Osuga J; Ishibashi S; Yamada N Mol Endocrinol; 2003 Jul; 17(7):1240-54. PubMed ID: 12730331 [TBL] [Abstract][Full Text] [Related]
19. Apigenin Ameliorates Insulin Resistance and Lipid Accumulation by Endoplasmic Reticulum Stress and SREBP-1c/SREBP-2 Pathway in Palmitate-Induced HepG2 Cells and High-Fat Diet-Fed Mice. Wu L; Guo T; Deng R; Liu L; Yu Y J Pharmacol Exp Ther; 2021 Apr; 377(1):146-156. PubMed ID: 33509902 [TBL] [Abstract][Full Text] [Related]
20. CM3-SII polysaccharide obtained from Cordyceps militaris ameliorates hyperlipidemia in heterozygous LDLR-deficient hamsters by modulating gut microbiota and NPC1L1 and PPARα levels. Yu WQ; Wang XL; Ji HH; Miao M; Zhang BH; Li H; Zhang ZY; Ji CF; Guo SD Int J Biol Macromol; 2023 Jun; 239():124293. PubMed ID: 37011745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]