These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38375530)

  • 1. FluoroTensor: Identification and tracking of colocalised molecules and their stoichiometries in multi-colour single molecule imaging via deep learning.
    Wills MFK; Alejo CB; Hundt N; Hudson AJ; Eperon IC
    Comput Struct Biotechnol J; 2024 Dec; 23():918-928. PubMed ID: 38375530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Stoichiometry Analysis of Single-Molecule Fluorescence Imaging Traces via Deep Learning.
    Xu J; Qin G; Luo F; Wang L; Zhao R; Li N; Yuan J; Fang X
    J Am Chem Soc; 2019 May; 141(17):6976-6985. PubMed ID: 30950273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel method for automatic single molecule tracking of blinking molecules at low intensities.
    Wöll D; Kölbl C; Stempfle B; Karrenbauer A
    Phys Chem Chem Phys; 2013 May; 15(17):6196-205. PubMed ID: 23429424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method to accurately locate and count large numbers of steps by photobleaching.
    Tsekouras K; Custer TC; Jashnsaz H; Walter NG; Pressé S
    Mol Biol Cell; 2016 Nov; 27(22):3601-3615. PubMed ID: 27654946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning method for data association in particle tracking.
    Yao Y; Smal I; Grigoriev I; Akhmanova A; Meijering E
    Bioinformatics; 2020 Dec; 36(19):4935-4941. PubMed ID: 32879934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring subunit stoichiometry from single molecule photobleaching.
    Hines KE
    J Gen Physiol; 2013 Jun; 141(6):737-46. PubMed ID: 23712552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification-based motion analysis of single-molecule trajectories using DiffusionLab.
    Maris JJE; Rabouw FT; Weckhuysen BM; Meirer F
    Sci Rep; 2022 Jun; 12(1):9595. PubMed ID: 35689015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation.
    Zhang H; Guo P
    Methods; 2014 May; 67(2):169-76. PubMed ID: 24440482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks.
    Wåhlstrand Skärström V; Krona A; Lorén N; Röding M
    J Microsc; 2021 May; 282(2):146-161. PubMed ID: 33247838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the subunit composition of multimeric proteins by counting photobleaching steps.
    Arant RJ; Ulbrich MH
    Chemphyschem; 2014 Mar; 15(4):600-5. PubMed ID: 24481650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Analysis of Single-Molecule Photobleaching Data by Statistical Modeling of Spot Populations.
    Liesche C; Grussmayer KS; Ludwig M; Wörz S; Rohr K; Herten DP; Beaudouin J; Eils R
    Biophys J; 2015 Dec; 109(11):2352-62. PubMed ID: 26636946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET.
    Forde TS; Hanley QS
    Photochem Photobiol Sci; 2005 Aug; 4(8):609-16. PubMed ID: 16052267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FRET-enhanced photostability allows improved single-molecule tracking of proteins and protein complexes in live mammalian cells.
    Basu S; Needham LM; Lando D; Taylor EJR; Wohlfahrt KJ; Shah D; Boucher W; Tan YL; Bates LE; Tkachenko O; Cramard J; Lagerholm BC; Eggeling C; Hendrich B; Klenerman D; Lee SF; Laue ED
    Nat Commun; 2018 Jun; 9(1):2520. PubMed ID: 29955052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photobleaching and Sensitized Emission-Based Methods for the Detection of Förster Resonance Energy Transfer.
    Zimmermann T
    Methods Mol Biol; 2019; 2040():235-274. PubMed ID: 31432483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined High-Resolution Optical Tweezers and Multicolor Single-Molecule Fluorescence with an Automated Single-Molecule Assembly Line.
    Chuang CY; Zammit M; Whitmore ML; Comstock MJ
    J Phys Chem A; 2019 Nov; 123(44):9612-9620. PubMed ID: 31621318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method.
    Zhao Z; Voros S; Weng Y; Chang F; Li R
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):26-35. PubMed ID: 28937281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the steps in single-molecule photobleaching traces by using the hidden markov model and maximum-likelihood clustering.
    Yuan J; He K; Cheng M; Yu J; Fang X
    Chem Asian J; 2014 Aug; 9(8):2303-8. PubMed ID: 24981813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.