BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38375718)

  • 21. Tet proteins: on track towards DNA demethylation?
    Véron N
    Biomol Concepts; 2012 Oct; 3(5):395-402. PubMed ID: 25436545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic DNA oxidation: mechanisms and biological significance.
    Xu GL; Walsh CP
    BMB Rep; 2014 Nov; 47(11):609-18. PubMed ID: 25341925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TET-mediated DNA demethylation plays an important role in arsenic-induced HBE cells oxidative stress via regulating promoter methylation of OGG1 and GSTP1.
    Wang Q; Wang W; Zhang A
    Toxicol In Vitro; 2021 Apr; 72():105075. PubMed ID: 33388378
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic changes of DNA epigenetic marks in mouse oocytes during natural and accelerated aging.
    Qian Y; Tu J; Tang NL; Kong GW; Chung JP; Chan WY; Lee TL
    Int J Biochem Cell Biol; 2015 Oct; 67():121-7. PubMed ID: 25982203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and Function of TET Enzymes.
    Yin X; Hu L; Xu Y
    Adv Exp Med Biol; 2022; 1389():239-267. PubMed ID: 36350513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA.
    He YF; Li BZ; Li Z; Liu P; Wang Y; Tang Q; Ding J; Jia Y; Chen Z; Li L; Sun Y; Li X; Dai Q; Song CX; Zhang K; He C; Xu GL
    Science; 2011 Sep; 333(6047):1303-7. PubMed ID: 21817016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics.
    Shen L; Wu H; Diep D; Yamaguchi S; D'Alessio AC; Fung HL; Zhang K; Zhang Y
    Cell; 2013 Apr; 153(3):692-706. PubMed ID: 23602152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ten-eleven translocase: key regulator of the methylation landscape in cancer.
    Shekhawat J; Gauba K; Gupta S; Choudhury B; Purohit P; Sharma P; Banerjee M
    J Cancer Res Clin Oncol; 2021 Jul; 147(7):1869-1879. PubMed ID: 33913031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer.
    Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD
    Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications.
    Zhang X; Zhang Y; Wang C; Wang X
    Signal Transduct Target Ther; 2023 Aug; 8(1):297. PubMed ID: 37563110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functionally distinct roles for TET-oxidized 5-methylcytosine bases in somatic reprogramming to pluripotency.
    Caldwell BA; Liu MY; Prasasya RD; Wang T; DeNizio JE; Leu NA; Amoh NYA; Krapp C; Lan Y; Shields EJ; Bonasio R; Lengner CJ; Kohli RM; Bartolomei MS
    Mol Cell; 2021 Feb; 81(4):859-869.e8. PubMed ID: 33352108
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer.
    Kroeze LI; van der Reijden BA; Jansen JH
    Biochim Biophys Acta; 2015 Apr; 1855(2):144-54. PubMed ID: 25579174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase.
    van der Wijst MG; Venkiteswaran M; Chen H; Xu GL; Plösch T; Rots MG
    Epigenetics; 2015; 10(8):671-6. PubMed ID: 26098813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles and Regulations of TET Enzymes in Solid Tumors.
    Bray JK; Dawlaty MM; Verma A; Maitra A
    Trends Cancer; 2021 Jul; 7(7):635-646. PubMed ID: 33468438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development.
    Nettersheim D; Heukamp LC; Fronhoffs F; Grewe MJ; Haas N; Waha A; Honecker F; Waha A; Kristiansen G; Schorle H
    PLoS One; 2013; 8(12):e82881. PubMed ID: 24386123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dysregulation of DNA epigenetic modulators during prostate carcinogenesis in an eastern Indian patient population: Prognostic implications.
    Banerjee A; Bardhan A; Sarkar P; Datta C; Pal DK; Saha A; Ghosh A
    Pathol Res Pract; 2024 Jan; 253():154970. PubMed ID: 38056136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL.
    Poole CJ; Lodh A; Choi JH; van Riggelen J
    Epigenetics Chromatin; 2019 Jul; 12(1):41. PubMed ID: 31266538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep.
    Jafarpour F; Hosseini SM; Ostadhosseini S; Abbasi H; Dalman A; Nasr-Esfahani MH
    Theriogenology; 2017 Feb; 89():86-96. PubMed ID: 28043375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 5-Hydroxymethylcytosine-mediated active demethylation is required for mammalian neuronal differentiation and function.
    Stoyanova E; Riad M; Rao A; Heintz N
    Elife; 2021 Dec; 10():. PubMed ID: 34919053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tet family proteins and 5-hydroxymethylcytosine in development and disease.
    Tan L; Shi YG
    Development; 2012 Jun; 139(11):1895-902. PubMed ID: 22569552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.