These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38375804)

  • 1. High-Throughput Two-Photon 3D Printing Enabled by Holographic Multi-Foci High-Speed Scanning.
    Zhang L; Wang C; Zhang C; Xue Y; Ye Z; Xu L; Hu Y; Li J; Chu J; Wu D
    Nano Lett; 2024 Feb; 24(8):2671-2679. PubMed ID: 38375804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An open source three-mirror laser scanning holographic two-photon lithography system.
    Pisanello M; Zheng D; Balena A; Pisano F; De Vittorio M; Pisanello F
    PLoS One; 2022; 17(4):e0265678. PubMed ID: 35427396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discover Patent Landscape of Two-photon Polymerization Technology for the Production of 3D Nano-structure Using Claim-based Approach.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):218-230. PubMed ID: 30117404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast micron-scale 3D printing with a resonant-scanning two-photon microscope.
    Pearre BW; Michas C; Tsang JM; Gardner TJ; Otchy TM
    Addit Manuf; 2019 Dec; 30():. PubMed ID: 32864346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing at Micro-Level: Laser-Induced Forward Transfer and Two-Photon Polymerization.
    Mahmood MA; Popescu AC
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34206309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holographic multi-focus 3D two-photon polymerization with real-time calculated holograms.
    Vizsnyiczai G; Kelemen L; Ormos P
    Opt Express; 2014 Oct; 22(20):24217-23. PubMed ID: 25321996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoresist Development for 3D Printing of Conductive Microstructures via Two-Photon Polymerization.
    Zhou X; Liu X; Gu Z
    Adv Mater; 2024 Nov; 36(48):e2409326. PubMed ID: 39397334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-Photon 3D Printing in Metal-Organic Framework Single Crystals.
    Zhang Y; Su Y; Zhao Y; Wang Z; Wang C
    Small; 2022 May; 18(18):e2200514. PubMed ID: 35481614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Shape-Morphing Microarchitectures Fabricated by Dynamic Holographically Shifted Femtosecond Multifoci.
    Zhang L; Liu B; Wang C; Xin C; Li R; Wang D; Xu L; Fan S; Zhang J; Zhang C; Hu Y; Li J; Wu D; Zhang L; Chu J
    Nano Lett; 2022 Jul; 22(13):5277-5286. PubMed ID: 35728002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology.
    Fiedor P; Ortyl J
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level.
    Zeng Z; Li Z; Fang F; Zhang X
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization.
    Geng Q; Wang D; Chen P; Chen SC
    Nat Commun; 2019 May; 10(1):2179. PubMed ID: 31097713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery.
    Xing JF; Zheng ML; Duan XM
    Chem Soc Rev; 2015 Aug; 44(15):5031-9. PubMed ID: 25992492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses.
    Somers P; Liang Z; Johnson JE; Boudouris BW; Pan L; Xu X
    Light Sci Appl; 2021 Sep; 10(1):199. PubMed ID: 34561417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Calibration Method for the Resolution of 2D TPP Laser Direct Writing.
    Xie Y; Chen Y; Xu H; Chen J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.
    Ho CMB; Mishra A; Hu K; An J; Kim YJ; Yoon YJ
    ACS Biomater Sci Eng; 2017 Oct; 3(10):2198-2214. PubMed ID: 33445279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-photon polymerization for 3D biomedical scaffolds: Overview and updates.
    Jing X; Fu H; Yu B; Sun M; Wang L
    Front Bioeng Biotechnol; 2022; 10():994355. PubMed ID: 36072288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a 30 µm pixel size CLIP-based 3D printer and its enhancement through dynamic printing optimization.
    Lee BJ; Hsiao K; Lipkowitz G; Samuelsen T; Tate L; DeSimone JM
    Addit Manuf; 2022 Jul; 55():. PubMed ID: 35602181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knowledge domain and hotspots analysis concerning applications of two-photon polymerization in biomedical field: A bibliometric and visualized study.
    Fu H; Jing X; Lin J; Wang L; Jiang H; Yu B; Sun M
    Front Bioeng Biotechnol; 2022; 10():1030377. PubMed ID: 36246385
    [No Abstract]   [Full Text] [Related]  

  • 20. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator.
    Gittard SD; Nguyen A; Obata K; Koroleva A; Narayan RJ; Chichkov BN
    Biomed Opt Express; 2011 Nov; 2(11):3167-78. PubMed ID: 22076276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.