These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38375921)

  • 1. Employing bimodal representations to predict DNA bendability within a self-supervised pre-trained framework.
    Yang M; Zhang S; Zheng Z; Zhang P; Liang Y; Tang S
    Nucleic Acids Res; 2024 Apr; 52(6):e33. PubMed ID: 38375921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNAcycP: a deep learning tool for DNA cyclizability prediction.
    Li K; Carroll M; Vafabakhsh R; Wang XA; Wang JP
    Nucleic Acids Res; 2022 Apr; 50(6):3142-3154. PubMed ID: 35288750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing base-resolution DNA mechanics on the genome scale.
    Jiang WJ; Hu C; Lai F; Pang W; Yi X; Xu Q; Wang H; Zhou J; Zhu H; Zhong C; Kuang Z; Fan R; Shen J; Zhou X; Wang YJ; Wong CCL; Zheng X; Wu HJ
    Nucleic Acids Res; 2023 Oct; 51(18):9552-9566. PubMed ID: 37697433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepBend: An interpretable model of DNA bendability.
    Khan SR; Sakib S; Rahman MS; Samee MAH
    iScience; 2023 Feb; 26(2):105945. PubMed ID: 36866046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring DNA mechanics on the genome scale.
    Basu A; Bobrovnikov DG; Qureshi Z; Kayikcioglu T; Ngo TTM; Ranjan A; Eustermann S; Cieza B; Morgan MT; Hejna M; Rube HT; Hopfner KP; Wolberger C; Song JS; Ha T
    Nature; 2021 Jan; 589(7842):462-467. PubMed ID: 33328628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Representation learning of genomic sequence motifs with convolutional neural networks.
    Koo PK; Eddy SR
    PLoS Comput Biol; 2019 Dec; 15(12):e1007560. PubMed ID: 31856220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting enhancers with deep convolutional neural networks.
    Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome.
    Ji Y; Zhou Z; Liu H; Davuluri RV
    Bioinformatics; 2021 Aug; 37(15):2112-2120. PubMed ID: 33538820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pattern and evolution of looped gene bendability.
    Dai Z; Xiong Y; Dai X
    Mol Biol Evol; 2014 Feb; 31(2):319-29. PubMed ID: 24124207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding.
    Min X; Zeng W; Chen N; Chen T; Jiang R
    Bioinformatics; 2017 Jul; 33(14):i92-i101. PubMed ID: 28881969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information.
    Le NQK; Ho QT; Nguyen TT; Ou YY
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Lightweight Hybrid Model with Attention Mechanism for Enhancer Sequence Recognition.
    Aladhadh S; Almatroodi SA; Habib S; Alabdulatif A; Khattak SU; Islam M
    Biomolecules; 2022 Dec; 13(1):. PubMed ID: 36671456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence based prediction of enhancer regions from DNA random walk.
    Singh AP; Mishra S; Jabin S
    Sci Rep; 2018 Oct; 8(1):15912. PubMed ID: 30374023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SENet: A deep learning framework for discriminating super- and typical enhancers by sequence information.
    Luo H; Li Y; Liu H; Ding P; Yu Y; Luo L
    Comput Biol Chem; 2023 Aug; 105():107905. PubMed ID: 37348298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Quantification of DNA Sequences Using Evolutionary Information Based on Deep Learning.
    Tayara H; Chong KT
    Cells; 2019 Dec; 8(12):. PubMed ID: 31847308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the mechanical code of the genome and epigenome.
    Basu A; Bobrovnikov DG; Cieza B; Arcon JP; Qureshi Z; Orozco M; Ha T
    Nat Struct Mol Biol; 2022 Dec; 29(12):1178-1187. PubMed ID: 36471057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAResNet: self-attention residual network for predicting DNA-protein binding.
    Shen LC; Liu Y; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.