These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38376)

  • 1. Physiological studies on Phymatotrichum omnivorum. IX. Synthesis of indole acetic acid in vitro.
    Gunasekaran M
    Microbios; 1978; 22(88):85-91. PubMed ID: 38376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth behaviour and indole acetic acid (IAA) production by a Rhizobium isolated from root nodules of Alysicarpus vaginalis DC.
    Bhattacharyya RN; Pati BR
    Acta Microbiol Immunol Hung; 2000; 47(1):41-51. PubMed ID: 10735189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled.
    Ona O; Van Impe J; Prinsen E; Vanderleyden J
    FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological studies on Phymatotrichum omnivorum. XII Influence of cultural conditions on amylase synthesis.
    Gunasekaran M
    Microbios; 1981; 29(115):37-43. PubMed ID: 6166833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological studies on Phymatotrichum omnivorum. IV. Effect of pH and the interaction of temperature, minerals and carbon source on growth in vitro.
    Gunasekaran M
    Mycopathol Mycol Appl; 1973 Aug; 50(4):313-21. PubMed ID: 4795954
    [No Abstract]   [Full Text] [Related]  

  • 6. Production of indole-3-acetic acid and related indole derivatives from L-tryptophan by Rubrivivax benzoatilyticus JA2.
    Mujahid M; Sasikala Ch; Ramana ChV
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1001-8. PubMed ID: 20972782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indole 3-acetic acid production by ectomycorrhizal fungi.
    Gopinathan S; Raman N
    Indian J Exp Biol; 1992 Feb; 30(2):142-3. PubMed ID: 1521864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-dependent indole-3-acetic acid biosynthesis by 'IAA-synthase' proceeds via indole-3-acetamide.
    Pollmann S; Düchting P; Weiler EW
    Phytochemistry; 2009 Mar; 70(4):523-31. PubMed ID: 19268331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo.
    Ghosh S; Basu PS
    Microbiol Res; 2006; 161(4):362-6. PubMed ID: 16473504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth behaviour and bioproduction of indole acetic acid by a Rhizobium sp. isolated from root nodules of a leguminous tree Dalbergia lanceolaria.
    Ghosh AC; Basu PS
    Indian J Exp Biol; 2002 Jul; 40(7):796-801. PubMed ID: 12597549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42.
    Idris EE; Iglesias DJ; Talon M; Borriss R
    Mol Plant Microbe Interact; 2007 Jun; 20(6):619-26. PubMed ID: 17555270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin biosynthesis in maize.
    Kriechbaumer V; Park WJ; Gierl A; Glawischnig E
    Plant Biol (Stuttg); 2006 May; 8(3):334-9. PubMed ID: 16807825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin.
    Tsavkelova EA; Cherdyntseva TA; Klimova SY; Shestakov AI; Botina SG; Netrusov AI
    Arch Microbiol; 2007 Dec; 188(6):655-64. PubMed ID: 17687544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Auxin production by bacteria associated with orchid roots].
    Tsavkelova EA; Cherdyntseva TA; Netrusov AI
    Mikrobiologiia; 2005; 74(1):55-62. PubMed ID: 15835779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Production of auxins by the endophytic bacteria of winter rye].
    Merzaeva OV; Shirokikh IG
    Prikl Biokhim Mikrobiol; 2010; 46(1):51-7. PubMed ID: 20198917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of auxins from tryptophan and tryptophan-precursors by fungi isolated from mycorrhizae of pine (Pinus silvestris L.).
    Strzelczyk E; Sitek JM; Kowalski S
    Acta Microbiol Pol; 1977; 26(3):255-64. PubMed ID: 70970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indole-3-acetic acid production by newly isolated red yeast Rhodosporidium paludigenum.
    Nutaratat P; Amsri W; Srisuk N; Arunrattiyakorn P; Limtong S
    J Gen Appl Microbiol; 2015; 61(1):1-9. PubMed ID: 25833674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypaphorine from the ectomycorrhizal fungus Pisolithus tinctorius counteracts activities of indole-3-acetic acid and ethylene but not synthetic auxins in eucalypt seedlings.
    Ditengou FA; Lapeyrie F
    Mol Plant Microbe Interact; 2000 Feb; 13(2):151-8. PubMed ID: 10659705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of water-soluble vitamins on the production of indole-3-acetic acid by Azospirillum brasilense.
    Zakharova EA; Iosipenko AD; Ignatov VV
    Microbiol Res; 2000 Sep; 155(3):209-14. PubMed ID: 11061189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Aerobic methylobacteria are capable of synthesizing auxins].
    Ivanova EG; Doronina NV; Trotsenko IuA
    Mikrobiologiia; 2001; 70(4):452-8. PubMed ID: 11558269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.