These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 38376900)

  • 1. Diameter dependence of transport through nuclear pore complex mimics studied using optical nanopores.
    Klughammer N; Barth A; Dekker M; Fragasso A; Onck PR; Dekker C
    Elife; 2024 Feb; 12():. PubMed ID: 38376900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics.
    Ananth AN; Mishra A; Frey S; Dwarkasing A; Versloot R; van der Giessen E; Görlich D; Onck P; Dekker C
    Elife; 2018 Feb; 7():. PubMed ID: 29442997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex.
    Fragasso A; de Vries HW; Andersson J; van der Sluis EO; van der Giessen E; Dahlin A; Onck PR; Dekker C
    Nat Commun; 2021 Mar; 12(1):2010. PubMed ID: 33790297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of Nsp1 nucleoporins provides insight into nuclear pore complex gating.
    Gamini R; Han W; Stone JE; Schulten K
    PLoS Comput Biol; 2014 Mar; 10(3):e1003488. PubMed ID: 24626154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex.
    Ketterer P; Ananth AN; Laman Trip DS; Mishra A; Bertosin E; Ganji M; van der Torre J; Onck P; Dietz H; Dekker C
    Nat Commun; 2018 Mar; 9(1):902. PubMed ID: 29500415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Pore Membrane Proteins Self-Assemble into Nanopores.
    Panatala R; Barbato S; Kozai T; Luo J; Kapinos LE; Lim RYH
    Biochemistry; 2019 Feb; 58(6):484-488. PubMed ID: 30605322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex.
    Jovanovic-Talisman T; Tetenbaum-Novatt J; McKenney AS; Zilman A; Peters R; Rout MP; Chait BT
    Nature; 2009 Feb; 457(7232):1023-7. PubMed ID: 19098896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of selectivity and specificity in a coarse-grained model of the nuclear pore complex with sequence-agnostic FG-Nups.
    Patel MK; Chakrabarti B; Panwar AS
    Phys Chem Chem Phys; 2023 Dec; 25(48):32824-32836. PubMed ID: 38018404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex.
    Moussavi-Baygi R; Jamali Y; Karimi R; Mofrad MR
    PLoS Comput Biol; 2011 Jun; 7(6):e1002049. PubMed ID: 21673865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-molecule transport across an individual biomimetic nuclear pore complex.
    Kowalczyk SW; Kapinos L; Blosser TR; Magalhães T; van Nies P; Lim RY; Dekker C
    Nat Nanotechnol; 2011 Jun; 6(7):433-8. PubMed ID: 21685911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-regulation of the nuclear pore complex enables clogging-free crowded transport.
    Zheng T; Zilman A
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2212874120. PubMed ID: 36757893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleoporin Nsp1 surveils the phase state of FG-Nups.
    Otto TA; Bergsma T; Dekker M; Mouton SN; Gallardo P; Wolters JC; Steen A; Onck PR; Veenhoff LM
    Cell Rep; 2024 Oct; 43(10):114793. PubMed ID: 39356635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Programmable DNA Origami Platform for Organizing Intrinsically Disordered Nucleoporins within Nanopore Confinement.
    Fisher PDE; Shen Q; Akpinar B; Davis LK; Chung KKH; Baddeley D; Šarić A; Melia TJ; Hoogenboom BW; Lin C; Lusk CP
    ACS Nano; 2018 Feb; 12(2):1508-1518. PubMed ID: 29350911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NPC mimics: probing the mechanism of nucleocytoplasmic transport.
    Jovanovic-Talisman T; Chait BT; Rout MP
    Methods Cell Biol; 2014; 122():379-93. PubMed ID: 24857739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule studies of nucleocytoplasmic transport: from one dimension to three dimensions.
    Goryaynov A; Ma J; Yang W
    Integr Biol (Camb); 2012 Jan; 4(1):10-21. PubMed ID: 22020388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of FG-Nup Phosphorylation on NPC Selectivity: A One-Bead-Per-Amino-Acid Molecular Dynamics Study.
    Mishra A; Sipma W; Veenhoff LM; Van der Giessen E; Onck PR
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex.
    Winogradoff D; Chou HY; Maffeo C; Aksimentiev A
    Nat Commun; 2022 Sep; 13(1):5138. PubMed ID: 36050301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesoscale simulations of biomolecular transport through nanofilters with tapered and cylindrical geometries.
    Ileri N; Létant SE; Palazoglu A; Stroeve P; Tringe JW; Faller R
    Phys Chem Chem Phys; 2012 Nov; 14(43):15066-77. PubMed ID: 23034638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics of Transport through the Nuclear Pore Complex.
    Ghavami A; van der Giessen E; Onck PR
    PLoS One; 2016; 11(2):e0148876. PubMed ID: 26894898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SPEED Microscopy and Its Application in Nucleocytoplasmic Transport.
    Ma J; Kelich JM; Yang W
    Methods Mol Biol; 2016; 1411():503-18. PubMed ID: 27147062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.