These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 38377419)

  • 1. Astrocytic response to neural injury is larger during development than in adulthood and is not predicated upon the presence of microglia.
    Riquier AJ; Sollars SI
    Brain Behav Immun Health; 2020 Jan; 1():100010. PubMed ID: 38377419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microglia density decreases in the rat rostral nucleus of the solitary tract across development and increases in an age-dependent manner following denervation.
    Riquier AJ; Sollars SI
    Neuroscience; 2017 Jul; 355():36-48. PubMed ID: 28478126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerative Failure Following Rat Neonatal Chorda Tympani Transection is Associated with Geniculate Ganglion Cell Loss and Terminal Field Plasticity in the Nucleus of the Solitary Tract.
    Martin LJ; Lane AH; Samson KK; Sollars SI
    Neuroscience; 2019 Mar; 402():66-77. PubMed ID: 30684590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taste activity in the parabrachial region in adult rats following neonatal chorda tympani transection.
    Martin LJ; Breza JM; Sollars SI
    J Neurophysiol; 2021 Jun; 125(6):2178-2190. PubMed ID: 33909497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terminal field volume of the glossopharyngeal nerve in adult rats reverts to prepruning size following microglia depletion with PLX5622.
    Riquier AJ; Sollars SI
    Dev Neurobiol; 2022 Oct; 82(7-8):613-624. PubMed ID: 36308508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of chorda tympani nerve injury on cell survival, axon maintenance, and morphology of the chorda tympani nerve terminal field in the nucleus of the solitary tract.
    Reddaway RB; Davidow AW; Deal SL; Hill DL
    J Comp Neurol; 2012 Aug; 520(11):2395-413. PubMed ID: 22237830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury.
    Zhou ZL; Xie H; Tian XB; Xu HL; Li W; Yao S; Zhang H
    Neural Regen Res; 2023 Jun; 18(6):1325-1331. PubMed ID: 36453419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-dose PLX5622 treatment prevents neuroinflammatory and neurocognitive sequelae after sepsis.
    Mein N; von Stackelberg N; Wickel J; Geis C; Chung HY
    J Neuroinflammation; 2023 Dec; 20(1):289. PubMed ID: 38041192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-seq and network analysis reveal unique glial gene expression signatures during prion infection.
    Carroll JA; Race B; Williams K; Striebel J; Chesebro B
    Mol Brain; 2020 May; 13(1):71. PubMed ID: 32381108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gut microbiome regulates astrocyte reaction to Aβ amyloidosis through microglial dependent and independent mechanisms.
    Chandra S; Di Meco A; Dodiya HB; Popovic J; Cuddy LK; Weigle IQ; Zhang X; Sadleir K; Sisodia SS; Vassar R
    Mol Neurodegener; 2023 Jul; 18(1):45. PubMed ID: 37415149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inflammatory Foreign Body Response Induced by Neuro-Implants in Rat Cortices Depleted of Resident Microglia by a CSF1R Inhibitor and Its Implications.
    Sharon A; Jankowski MM; Shmoel N; Erez H; Spira ME
    Front Neurosci; 2021; 15():646914. PubMed ID: 33841088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain.
    Lee S; Shi XQ; Fan A; West B; Zhang J
    Mol Pain; 2018; 14():1744806918764979. PubMed ID: 29546785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microglia depletion increase brain injury after acute ischemic stroke in aged mice.
    Marino Lee S; Hudobenko J; McCullough LD; Chauhan A
    Exp Neurol; 2021 Feb; 336():113530. PubMed ID: 33221396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microglia Are Irrelevant for Neuronal Degeneration and Axon Regeneration after Acute Injury.
    Hilla AM; Diekmann H; Fischer D
    J Neurosci; 2017 Jun; 37(25):6113-6124. PubMed ID: 28539419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glial responses after chorda tympani nerve injury.
    Bartel DL
    J Comp Neurol; 2012 Aug; 520(12):2712-29. PubMed ID: 22315167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term alterations in peripheral taste responses to NaCl in adult rats following neonatal chorda tympani transection.
    Martin LJ; Sollars SI
    Chem Senses; 2015 Feb; 40(2):97-108. PubMed ID: 25537015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chorda tympani nerve terminal field maturation and maintenance is severely altered following changes to gustatory nerve input to the nucleus of the solitary tract.
    Corson SL; Hill DL
    J Neurosci; 2011 May; 31(21):7591-603. PubMed ID: 21613473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitigation of helium irradiation-induced brain injury by microglia depletion.
    Allen BD; Syage AR; Maroso M; Baddour AAD; Luong V; Minasyan H; Giedzinski E; West BL; Soltesz I; Limoli CL; Baulch JE; Acharya MM
    J Neuroinflammation; 2020 May; 17(1):159. PubMed ID: 32429943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice.
    Li Y; Ritzel RM; Khan N; Cao T; He J; Lei Z; Matyas JJ; Sabirzhanov B; Liu S; Li H; Stoica BA; Loane DJ; Faden AI; Wu J
    Theranostics; 2020; 10(25):11376-11403. PubMed ID: 33052221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microglia are not necessary for maintenance of blood-brain barrier properties in health, but PLX5622 alters brain endothelial cholesterol metabolism.
    Profaci CP; Harvey SS; Bajc K; Zhang TZ; Jeffrey DA; Zhang AZ; Nemec KM; Davtyan H; O'Brien CA; McKinsey GL; Longworth A; McMullen TP; Capocchi JK; Gonzalez JG; Lawson DA; Arnold TD; Davalos D; Blurton-Jones M; Dabertrand F; Bennett FC; Daneman R
    Neuron; 2024 Aug; ():. PubMed ID: 39142282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.