BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38377538)

  • 1. Development of the Static and Dynamic Gene Expression Regulation Toolkit in
    Yue SJ; Zhou Z; Huang P; Wei YC; Zhan SX; Feng TT; Liu JR; Sun HC; Han WS; Xue ZL; Yan ZX; Wang W; Zhang XH; Hu HB
    ACS Synth Biol; 2024 Mar; 13(3):913-920. PubMed ID: 38377538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production.
    Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH
    World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine
    Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X
    ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
    Liu K; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering of
    Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K
    J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3.
    Wang S; Fu C; Bilal M; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2018 Nov; 17(1):174. PubMed ID: 30414616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a β-galactosidase-gene-based fusion is convenient for screening candidate genes involved in regulation of pyrrolnitrin biosynthesis in Pseudomonas chlororaphis G05.
    Luo W; Miao J; Feng Z; Lu R; Sun X; Zhang B; Ding W; Lu Y; Wang Y; Chi X; Ge Y
    J Gen Appl Microbiol; 2019 Jan; 64(6):259-268. PubMed ID: 29806629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of trans-2,3-dihydro-3-hydroxyanthranilic acid by engineered Pseudomonas chlororaphis GP72.
    Hu H; Li Y; Liu K; Zhao J; Wang W; Zhang X
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6607-6613. PubMed ID: 28702795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of cinnabarinic acid by metabolically engineered Pseudomonas chlororaphis GP72.
    Yue SJ; Song C; Li S; Huang P; Guo SQ; Hu HB; Wang W; Zhang XH
    Biotechnol Bioeng; 2019 Nov; 116(11):3072-3083. PubMed ID: 31317529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obtaining a Panel of Cascade Promoter-5'-UTR Complexes in Escherichia coli.
    Zhou S; Ding R; Chen J; Du G; Li H; Zhou J
    ACS Synth Biol; 2017 Jun; 6(6):1065-1075. PubMed ID: 28252945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05.
    Chi X; Wang Y; Miao J; Wang W; Sun Y; Yu Z; Feng Z; Cheng S; Chen L; Ge Y
    Microbiol Res; 2022 Jul; 260():127050. PubMed ID: 35504237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous production of rhamnolipids in Pseudomonas chlororaphis subsp chlororaphis ATCC 9446 based on the endogenous production of N-acyl-homoserine lactones.
    González-Valdez A; Escalante A; Soberón-Chávez G
    Microb Biotechnol; 2024 Jan; 17(1):e14377. PubMed ID: 38041625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An upstream sequence modulates phenazine production at the level of transcription and translation in the biological control strain Pseudomonas chlororaphis 30-84.
    Yu JM; Wang D; Ries TR; Pierson LS; Pierson EA
    PLoS One; 2018; 13(2):e0193063. PubMed ID: 29451920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Antibacterial Questiomycin A in Metabolically Engineered
    Guo S; Hu H; Wang W; Bilal M; Zhang X
    J Agric Food Chem; 2022 Jun; 70(25):7742-7750. PubMed ID: 35708224
    [No Abstract]   [Full Text] [Related]  

  • 17. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in
    Guo S; Wang Y; Bilal M; Hu H; Wang W; Zhang X
    J Agric Food Chem; 2020 Feb; 68(8):2373-2380. PubMed ID: 32013409
    [No Abstract]   [Full Text] [Related]  

  • 18. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs.
    Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X
    World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a Plasmid-Free Biosynthetic Pathway for Enhanced Muconic Acid Production in Pseudomonas chlororaphis HT66.
    Wang S; Bilal M; Zong Y; Hu H; Wang W; Zhang X
    ACS Synth Biol; 2018 Apr; 7(4):1131-1142. PubMed ID: 29608278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72.
    Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB
    J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.