These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38377590)

  • 1. Spatial Patterned Interfacial Solar Evaporators toward Recovering Heat Loss.
    Hu Y; Li S; Zhuang W; Tu H; Wan Y; Yang P
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10285-10294. PubMed ID: 38377590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator.
    Wu X; Wu Z; Wang Y; Gao T; Li Q; Xu H
    Adv Sci (Weinh); 2021 Apr; 8(7):2002501. PubMed ID: 33854876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Thermal Convection Film for Low Heat Loss and High Salt Resistance in Wood-Based Solar Evaporators.
    Pang Y; Ma C; Song L; Jin L; Zhu K; Wu Y; Li L; Chen F; Peng Y; Zheng X; Wu S; Shen Z; Chen H
    Small; 2024 Jun; ():e2403141. PubMed ID: 38874056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-Interface Solar Evaporator with Highly-Efficient Thermal Regulation via Suspended Multilayer Design.
    He N; Sun X; Wang H; Wang B; Tang D; Li L
    Small; 2024 May; ():e2402863. PubMed ID: 38764314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing solar steam generation using a highly thermally conductive evaporator support.
    Wang Y; Wu X; Wu P; Zhao J; Yang X; Owens G; Xu H
    Sci Bull (Beijing); 2021 Dec; 66(24):2479-2488. PubMed ID: 36654207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting solar steam generation by structure enhanced energy management.
    Wang Y; Wu X; Shao B; Yang X; Owens G; Xu H
    Sci Bull (Beijing); 2020 Aug; 65(16):1380-1388. PubMed ID: 36659217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated Evaporator for Efficient Solar-Driven Interfacial Steam Generation.
    Chen J; Li B; Hu G; Aleisa R; Lei S; Yang F; Liu D; Lyu F; Wang M; Ge X; Qian F; Zhang Q; Yin Y
    Nano Lett; 2020 Aug; 20(8):6051-6058. PubMed ID: 32687372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Freshwater Flux Solar Desalination via a 3D Plasmonic Evaporator with an Efficient Heat-Mass Evaporation Interface.
    Yang H; Li D; Zheng X; Zuo J; Zhao B; Li D; Zhang J; Liang Z; Jin J; Ju S; Peng M; Sun Y; Jiang L
    Adv Mater; 2023 Nov; 35(47):e2304699. PubMed ID: 37524107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reviewing wood-based solar-driven interfacial evaporators for desalination.
    Dong Y; Tan Y; Wang K; Cai Y; Li J; Sonne C; Li C
    Water Res; 2022 Sep; 223():119011. PubMed ID: 36037711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Porous Solar-Driven Interfacial Evaporator for High-Efficiency Steam Generation under Low Solar Flux.
    Chang C; Tao P; Fu B; Xu J; Song C; Wu J; Shang W; Deng T
    ACS Omega; 2019 Feb; 4(2):3546-3555. PubMed ID: 31459569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pickering Emulsion Templated 3D Cylindrical Open Porous Aerogel for Highly Efficient Solar Steam Generation.
    Chen Y; Hao J; Xu J; Hu Z; Bao H; Xu H
    Small; 2023 Nov; 19(48):e2303908. PubMed ID: 37507818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination.
    Shu L; Zhang XF; Wang Z; Liu J; Yao J
    Carbohydr Polym; 2024 Mar; 327():121695. PubMed ID: 38171664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waste sawdust-based composite as an interfacial evaporator for efficient solar steam generation.
    Rengasamy M; Rajaram K
    RSC Adv; 2023 Feb; 13(8):5173-5184. PubMed ID: 36777939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Water-Transfer.
    Zhu Y; Tian G; Liu Y; Li H; Zhang P; Zhan L; Gao R; Huang C
    Adv Sci (Weinh); 2021 Oct; 8(19):e2101727. PubMed ID: 34382356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting interfacial solar steam generation by three-dimensional bilayer cellulose aerogels.
    Li J; Li Y; Song W; Li X; Yang L; Yan L
    J Colloid Interface Sci; 2023 Nov; 650(Pt A):339-349. PubMed ID: 37413868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust and 3D-printed solar evaporator based on naturally occurring molecules.
    Zhang X; Yan Y; Li N; Yang P; Yang Y; Duan G; Wang X; Xu Y; Li Y
    Sci Bull (Beijing); 2023 Jan; 68(2):203-213. PubMed ID: 36681591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A water supply tunable bilayer evaporator for high-quality solar vapor generation.
    Zhang X; Li T; Liao W; Chen D; Deng Z; Liu X; Shang B
    Nanoscale; 2022 Jun; 14(21):7913-7918. PubMed ID: 35593223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable Ultralight Wood-Inspired Aerogel with Vertically Aligned Micrometer Channels for Highly Efficient Solar Interfacial Desalination.
    Zhang Q; Chen Y; Wang Y; He J; Yang P; Wang Y; Tang S
    ACS Appl Mater Interfaces; 2023 Nov; 15(43):50522-50531. PubMed ID: 37851931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Water Layer Conservation by "Nano-forest" in a Three-Dimensional Interface Regulates Energy Flow to Boost Solar Evaporation.
    Ma J; Xu Y; Xu Y; An L; Wang W
    Environ Sci Technol; 2023 Jul; 57(29):10652-10661. PubMed ID: 37458075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Flipping Solar Seesaw Evaporators Leverage Scaling to De-Scale.
    Chen YZ; Yang HC; Li HN; Xin JH; Zhang C; Wan LS; Xu ZK
    Small; 2024 Jul; 20(29):e2310952. PubMed ID: 38377230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.