These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38377611)

  • 1. Fabrication of gradient hydrogels using a thermophoretic approach in microfluidics.
    Kosmidis Papadimitriou A; Chong SW; Shen Y; Lee OS; Knowles TPJ; Grover LM; Vigolo D
    Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38377611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels.
    Ko H; Suthiwanich K; Mary H; Zanganeh S; Hu SK; Ahadian S; Yang Y; Choi G; Fetah K; Niu Y; Mao JJ; Khademhosseini A
    Biofabrication; 2019 Mar; 11(2):025014. PubMed ID: 30786263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.
    Xia T; Liu W; Yang L
    J Biomed Mater Res A; 2017 Jun; 105(6):1799-1812. PubMed ID: 28187512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The production of injectable hydrazone crosslinked gellan gum-hyaluronan-hydrogels with tunable mechanical and physical properties.
    Karvinen J; Koivisto JT; Jönkkäri I; Kellomäki M
    J Mech Behav Biomed Mater; 2017 Jul; 71():383-391. PubMed ID: 28411548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of hydrogels with steep stiffness gradients for studying cell mechanical response.
    Sunyer R; Jin AJ; Nossal R; Sackett DL
    PLoS One; 2012; 7(10):e46107. PubMed ID: 23056241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Evaluation of Gellan Gum/Silk Fibroin/Chondroitin Sulfate Ternary Injectable Hydrogel for Cartilage Tissue Engineering.
    Lee S; Choi J; Youn J; Lee Y; Kim W; Choe S; Song J; Reis RL; Khang G
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING.
    Sant S; Hancock MJ; Donnelly JP; Iyer D; Khademhosseini A
    Can J Chem Eng; 2010 Dec; 88(6):899-911. PubMed ID: 21874065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient Hydrogels.
    Lavrentieva A
    Adv Biochem Eng Biotechnol; 2021; 178():227-251. PubMed ID: 33219386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration.
    Liu E; Zhu D; Gonzalez Diaz E; Tong X; Yang F
    Tissue Eng Part A; 2021 Jul; 27(13-14):929-939. PubMed ID: 32940136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified Gellan Gum hydrogels with tunable physical and mechanical properties.
    Coutinho DF; Sant SV; Shin H; Oliveira JT; Gomes ME; Neves NM; Khademhosseini A; Reis RL
    Biomaterials; 2010 Oct; 31(29):7494-502. PubMed ID: 20663552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers.
    Santo VE; Babo P; Amador M; Correia C; Cunha B; Coutinho DF; Neves NM; Mano JF; Reis RL; Gomes ME
    Biomacromolecules; 2016 Jun; 17(6):1985-97. PubMed ID: 27203709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable gellan gum/lignocellulose nanofibrils hydrogels enriched with melatonin loaded forsterite nanoparticles for cartilage tissue engineering: Fabrication, characterization and cell culture studies.
    Kouhi M; Varshosaz J; Hashemibeni B; Sarmadi A
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111114. PubMed ID: 32600714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gellan gum injectable hydrogels for cartilage tissue engineering applications: in vitro studies and preliminary in vivo evaluation.
    Oliveira JT; Santos TC; Martins L; Picciochi R; Marques AP; Castro AG; Neves NM; Mano JF; Reis RL
    Tissue Eng Part A; 2010 Jan; 16(1):343-53. PubMed ID: 19702512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the rheology of gellan gum hydrogels in cell culture conditions.
    Moxon SR; Smith AM
    Int J Biol Macromol; 2016 Mar; 84():79-86. PubMed ID: 26683878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MMP-sensitive PEG diacrylate hydrogels with spatial variations in matrix properties stimulate directional vascular sprout formation.
    Turturro MV; Christenson MC; Larson JC; Young DA; Brey EM; Papavasiliou G
    PLoS One; 2013; 8(3):e58897. PubMed ID: 23554954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macrophage Phenotypic Changes on FN-Coated Physical Gradient Hydrogels.
    Li Z; Bratlie KM
    ACS Appl Bio Mater; 2021 Sep; 4(9):6758-6768. PubMed ID: 35006977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel-based methods for engineering cellular microenvironment with spatiotemporal gradients.
    Wang L; Li Y; Huang G; Zhang X; Pingguan-Murphy B; Gao B; Lu TJ; Xu F
    Crit Rev Biotechnol; 2016; 36(3):553-65. PubMed ID: 25641330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process.
    Burdick JA; Khademhosseini A; Langer R
    Langmuir; 2004 Jun; 20(13):5153-6. PubMed ID: 15986641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field-driven building blocks for introducing multiple gradients to hydrogels.
    Xu G; Ding Z; Lu Q; Zhang X; Zhou X; Xiao L; Lu G; Kaplan DL
    Protein Cell; 2020 Apr; 11(4):267-285. PubMed ID: 32048173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds.
    Whang M; Kim J
    Tissue Eng Regen Med; 2016 Apr; 13(2):126-139. PubMed ID: 30603392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.