These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38377906)

  • 1. Predicting the binding configuration and release potential of heavy metals on iron (oxyhydr)oxides: A machine learning study on EXAFS.
    Liu J; Zhao J; Du J; Peng S; Wu J; Zhang W; Yan X; Lin Z
    J Hazard Mater; 2024 Apr; 468():133797. PubMed ID: 38377906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides.
    Shi M; Min X; Ke Y; Lin Z; Yang Z; Wang S; Peng N; Yan X; Luo S; Wu J; Wei Y
    Sci Total Environ; 2021 Jan; 752():141930. PubMed ID: 32892052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron (oxyhydr)oxides are responsible for the stabilization of Cu and Zn in AMD after treatment with limestone.
    Ding Y; Long Y; Wang W; Wei Z; Cai S
    PeerJ; 2023; 11():e14663. PubMed ID: 36743955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits.
    Field HR; Whitaker AH; Henson JA; Duckworth OW
    Sci Total Environ; 2019 Dec; 697():134111. PubMed ID: 31487593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium Isotope Fractionation during Adsorption and Substitution with Iron (Oxyhydr)oxides.
    Yan X; Zhu M; Li W; Peacock CL; Ma J; Wen H; Liu F; Zhou Z; Zhu C; Yin H
    Environ Sci Technol; 2021 Sep; 55(17):11601-11611. PubMed ID: 34369749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony Isotope Fractionation during Adsorption on Iron (Oxyhydr)oxides.
    Luo J; Xie X; Shi J; Wang Y
    Environ Sci Technol; 2024 Jan; 58(1):695-703. PubMed ID: 38141021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony Isotope Fractionation Revealed from EXAFS during Adsorption on Fe (Oxyhydr)oxides.
    Zhou W; Zhou J; Feng X; Wen B; Zhou A; Liu P; Sun G; Zhou Z; Liu X
    Environ Sci Technol; 2023 Jun; 57(25):9353-9361. PubMed ID: 37295412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of nano-silica and biogenic iron (oxyhydr)oxides composites mediated by iron oxidizing bacteria to remove antimonite and antimonate from aqueous solution: Performance and mechanisms.
    Xu R; Li Q; Nan X; Yang Y; Xu B; Li K; Wang L; Zhang Y; Jiang T
    J Hazard Mater; 2022 Jan; 422():126821. PubMed ID: 34419843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic speciation transformation in soils with high geological background: New insights from the governing role of Fe.
    Gao M; Su Y; Gao J; Zhong X; Li H; Wang H; Lü C; He J
    Chemosphere; 2022 Sep; 302():134860. PubMed ID: 35551944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Fe(III) (Oxyhydr)oxides Mineralogy on Iron Solubilization and Associated Microbial Communities.
    Zhang F; Battaglia-Brunet F; Hellal J; Joulian C; Gautret P; Motelica-Heino M
    Front Microbiol; 2020; 11():571244. PubMed ID: 33329429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic insight into biopolymer induced iron oxide mineralization through quantification of molecular bonding.
    Sand KK; Jelavić S; Dobberschütz S; Ashby PD; Marshall MJ; Dideriksen K; Stipp SLS; Kerisit SN; Friddle RW; DeYoreo JJ
    Nanoscale Adv; 2020 Aug; 2(8):3323-3333. PubMed ID: 36134299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of dissolved organic matter molecules on the sequestration and stability of uranium during the transformation of Fe (oxyhydr)oxides.
    Ding Y; Huang X; Zhang H; Ding D
    Water Res; 2023 Feb; 229():119387. PubMed ID: 36459895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impacts of aging pH and time of acid mine drainage solutions on Fe mineralogy and chemical fractions of heavy metals in the sediments.
    Ying H; Zhao W; Feng X; Gu C; Wang X
    Chemosphere; 2022 Sep; 303(Pt 2):135077. PubMed ID: 35623433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands.
    Yang Z; Acker SM; Brady AR; Rodríguez AA; Paredes LM; Ticona J; Mariscal GR; Vanzin GF; Ranville JF; Sharp JO
    Sci Total Environ; 2023 Jun; 876():162478. PubMed ID: 36871713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr)oxides.
    Sklute EC; Kashyap S; Dyar MD; Holden JF; Tague T; Wang P; Jaret SJ
    Phys Chem Miner; 2018 Jan; 45(1):1-26. PubMed ID: 30135614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled variations of dissolved organic matter distribution and iron (oxyhydr)oxides transformation: Effects on the kinetics of uranium adsorption and desorption.
    Ding Y; Huang X; Zhang H; Ma J; Li F; Zeng Q; Hu N; Wang Y; Dai Z; Ding D
    J Hazard Mater; 2022 Aug; 436():129298. PubMed ID: 35739799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron Vacancies Accommodate Uranyl Incorporation into Hematite.
    McBriarty ME; Kerisit S; Bylaska EJ; Shaw S; Morris K; Ilton ES
    Environ Sci Technol; 2018 Jun; 52(11):6282-6290. PubMed ID: 29757622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater.
    Potter-McIntyre SL; Chan MA; McPherson BJ
    Astrobiology; 2014 Jan; 14(1):1-14. PubMed ID: 24380534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction and mechanisms in the phosphate-binding of iron(oxyhydr)oxide core-shell nanoparticles.
    Spicher MT; Schwaminger SP; von der Haar-Leistl D; Reindl M; Wagner FE; Berensmeier S
    J Colloid Interface Sci; 2023 Mar; 634():418-430. PubMed ID: 36542971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the sorption efficiency of heavy metal based on the biochar characteristics, metal sources, and environmental conditions using various novel hybrid machine learning models.
    Ke B; Nguyen H; Bui XN; Bui HB; Choi Y; Zhou J; Moayedi H; Costache R; Nguyen-Trang T
    Chemosphere; 2021 Aug; 276():130204. PubMed ID: 34088091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.