These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38377929)

  • 1. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems.
    Zheng S; Lin T; Chen H; Zhang X; Jiang F
    Water Res; 2024 Apr; 253():121331. PubMed ID: 38377929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response mechanisms of pipe wall biofilms in water supply networks under different disinfection strategy pressures and the effect of mediating halogenated acetonitrile formation.
    Zheng S; Lin T; Zhang X; Jiang F
    Chemosphere; 2023 Dec; 344():140382. PubMed ID: 37806328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feel the Burn: Disinfection Byproduct Formation and Cytotoxicity during Chlorine Burn Events.
    Allen JM; Plewa MJ; Wagner ED; Wei X; Bokenkamp K; Hur K; Jia A; Liberatore HK; Lee CT; Shirkhani R; Krasner SW; Richardson SD
    Environ Sci Technol; 2022 Jun; 56(12):8245-8254. PubMed ID: 35638116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of young biofilm morphology, disinfection byproduct formation potential and toxicity of renewed water supply pipelines by phosphorus release from corroded pipes.
    Zheng S; Lin T; Chen H; Zhang X; Jiang F
    Sci Total Environ; 2023 Aug; 884():163813. PubMed ID: 37121323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DBP-FP change of biofilm in drinking water distribution system induced by sequential UV and chlorine disinfection: Effect of UV dose and influencing mechanism.
    Zhang T; Li K; Liu X
    Environ Pollut; 2023 Dec; 338():122716. PubMed ID: 37832779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of biofilms on the formation and decay of disinfection by-products in chlor(am)inated water distribution systems.
    Wang Z; Li L; Ariss RW; Coburn KM; Behbahani M; Xue Z; Seo Y
    Sci Total Environ; 2021 Jan; 753():141606. PubMed ID: 32890868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of carbonaceous and nitrogenous iodinated disinfection byproducts from biofilm extracellular polymeric substances by the oxidation of iodide-containing waters with lead dioxide.
    Hu J; Xu Y; Chen Y; Chen J; Dong H; Yu J; Qiang Z; Qu J; Chen J
    Water Res; 2021 Jan; 188():116551. PubMed ID: 33128980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chlorine decay and disinfection by-products formation during chlorination of biofilms formed with simulated drinking water containing corrosion inhibitors.
    Shi X; Clark GG; Huang C; Nguyen TH; Yuan B
    Sci Total Environ; 2022 Apr; 815():152763. PubMed ID: 34990663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of operational conditions on the disinfection by-products formation potential of exopolymeric substances from biofilms in drinking water.
    Lemus-Pérez MF; Rodríguez Susa M
    Sci Total Environ; 2020 Dec; 748():141148. PubMed ID: 32798885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced formation of carbonaceous and nitrogenous disinfection byproducts from biofilm extracellular polymeric substances undercatalysis of copper corrosion products.
    Hu J; Wang C; Shao B; Fu L; Yu J; Qiang Z; Chen J
    Sci Total Environ; 2020 Jun; 723():138160. PubMed ID: 32224409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated chemical and toxicological investigation of UV-chlorine/chloramine drinking water treatment.
    Lyon BA; Milsk RY; DeAngelo AB; Simmons JE; Moyer MP; Weinberg HS
    Environ Sci Technol; 2014 Jun; 48(12):6743-53. PubMed ID: 24840005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time.
    Sakai H; Tokuhara S; Murakami M; Kosaka K; Oguma K; Takizawa S
    Water Res; 2016 Jan; 88():661-670. PubMed ID: 26575475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pipe materials on the characteristic recognition, disinfection byproduct formation, and toxicity risk of pipe wall biofilms during chlorination in water supply pipelines.
    Yan X; Lin T; Wang X; Zhang S; Zhou K
    Water Res; 2022 Feb; 210():117980. PubMed ID: 34974347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment.
    Qian Y; Chen Y; Hu Y; Hanigan D; Westerhoff P; An D
    Water Res; 2021 Apr; 194():116964. PubMed ID: 33652228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic chloramines attenuation and disinfection by-product formation during UV, chlorination and UV/chlorine processes.
    Xu MY; Lin YL; Zhang TY; Liu Z; Li MY; Hu CY; Xu B
    Chemosphere; 2022 Sep; 303(Pt 2):135025. PubMed ID: 35598788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of disinfectant type and dosage on biofilm's activity, viability, microbiome and antibiotic resistome in bench-scale drinking water distribution systems.
    Ke Y; Sun W; Chen Z; Zhu Y; Chen X; Yan S; Li Y; Xie S
    Water Res; 2024 Feb; 249():120958. PubMed ID: 38064782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the chemical compositions and disinfection byproduct formation of biofilms: Application of fluorescence excitation-emission spectroscopy coupled with parallel factor analysis.
    Li L; Jeon Y; Ryu H; Santo Domingo JW; Seo Y
    Chemosphere; 2020 May; 246():125745. PubMed ID: 31927366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel insights into formation mechanism of organic chloramines from pre-oxidized algae-laden water: Multiple roles of dissolved organic nitrogen.
    Sheng D; Bu L; Zhu S; Li N; Li L; Zhou S
    Sci Total Environ; 2022 Sep; 838(Pt 1):155894. PubMed ID: 35569657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of ClO
    Yao D; Chu W; Bond T; Ding S; Chen S
    Chemosphere; 2018 Apr; 196():25-34. PubMed ID: 29289848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.