These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38378186)

  • 1. Highly Localized Chemical Sampling at Subsecond Temporal Resolution Enabled with a Silicon Nanodialysis Platform at Nanoliter per Minute Flows.
    Park I; Kim S; Brenden CK; Shi W; Iyer H; Bashir R; Vlasov Y
    ACS Nano; 2024 Mar; 18(9):6963-6974. PubMed ID: 38378186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly localized chemical sampling at sub-second temporal resolution enabled with a silicon nanodialysis platform at exceedingly slow flows.
    Park I; Kim S; Brenden CK; Shi W; Iyer H; Bashir R; Vlasov Y
    bioRxiv; 2023 Sep; ():. PubMed ID: 37745310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Chemical Monitoring at High Spatiotemporal Resolution Using Microfabricated Sampling Probes and Droplet-Based Microfluidics Coupled to Mass Spectrometry.
    Ngernsutivorakul T; Steyer DJ; Valenta AC; Kennedy RT
    Anal Chem; 2018 Sep; 90(18):10943-10950. PubMed ID: 30107117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabrication and in Vivo Performance of a Microdialysis Probe with Embedded Membrane.
    Lee WH; Ngernsutivorakul T; Mabrouk OS; Wong JM; Dugan CE; Pappas SS; Yoon HJ; Kennedy RT
    Anal Chem; 2016 Jan; 88(2):1230-7. PubMed ID: 26727611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfabricated sampling probes for in vivo monitoring of neurotransmitters.
    Lee WH; Slaney TR; Hower RW; Kennedy RT
    Anal Chem; 2013 Apr; 85(8):3828-31. PubMed ID: 23547793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of faradaic current in an electrochemical cell integrated into silicon microfluidic channels.
    Brenden CK; Iyer H; Zhang Y; Kim S; Shi W; Vlasov YA
    Sens Actuators B Chem; 2023 Jun; 385():. PubMed ID: 37214161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfabricated, amperometric, enzyme-based biosensors for in vivo applications.
    Weltin A; Kieninger J; Urban GA
    Anal Bioanal Chem; 2016 Jul; 408(17):4503-21. PubMed ID: 26935934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic flow meter for sub-nanoliter per minute flow measurements.
    Sadeghi J; Patrone PN; Kearsley AJ; Cooksey GA
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35102729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A miniaturized push-pull-perfusion probe for few-second sampling of neurotransmitters in the mouse brain.
    van den Brink FTG; Phisonkunkasem T; Asthana A; Bomer JG; van den Maagdenberg AMJM; Tolner EA; Odijk M
    Lab Chip; 2019 Apr; 19(8):1332-1343. PubMed ID: 30869670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Push-pull perfusion sampling with segmented flow for high temporal and spatial resolution in vivo chemical monitoring.
    Slaney TR; Nie J; Hershey ND; Thwar PK; Linderman J; Burns MA; Kennedy RT
    Anal Chem; 2011 Jul; 83(13):5207-13. PubMed ID: 21604670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplet-based microdialysis-Concept, theory, and design considerations.
    Chen CF; Drew KL
    J Chromatogr A; 2008 Oct; 1209(1-2):29-36. PubMed ID: 18814875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabricated Probes for Studying Brain Chemistry: A Review.
    Ngernsutivorakul T; White TS; Kennedy RT
    Chemphyschem; 2018 May; 19(10):1128-1142. PubMed ID: 29405568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet-assisted electrospray phase separation using an integrated silicon microfluidic platform.
    Zhang Y; Kim S; Shi W; Zhao Y; Park I; Brenden C; Iyer H; Jha P; Bashir R; Sweedler JV; Vlasov Y
    Lab Chip; 2021 Dec; 22(1):40-46. PubMed ID: 34897344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural probe combining microelectrodes and a droplet-based microdialysis collection system for high temporal resolution sampling.
    Petit-Pierre G; Bertsch A; Renaud P
    Lab Chip; 2016 Mar; 16(5):917-24. PubMed ID: 26864169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids.
    Cellar NA; Burns ST; Meiners JC; Chen H; Kennedy RT
    Anal Chem; 2005 Nov; 77(21):7067-73. PubMed ID: 16255611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution integrated microfluidic probe for mass spectrometry imaging of biological tissues.
    Li X; Hu H; Laskin J
    Anal Chim Acta; 2023 Oct; 1279():341830. PubMed ID: 37827646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip microdialysis system with flow-through glucose sensing capabilities.
    Hsieh YC; Zahn JD
    J Diabetes Sci Technol; 2007 May; 1(3):375-83. PubMed ID: 19885093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust Microfabrication of Highly Parallelized Three-Dimensional Microfluidics on Silicon.
    Yadavali S; Lee D; Issadore D
    Sci Rep; 2019 Aug; 9(1):12213. PubMed ID: 31434933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosensor microprobes with integrated microfluidic channels for bi-directional neurochemical interaction.
    Frey O; van der Wal PD; Spieth S; Brett O; Seidl K; Paul O; Ruther P; Zengerle R; de Rooij NF
    J Neural Eng; 2011 Dec; 8(6):066001. PubMed ID: 21975226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.