These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3837826)

  • 1. Calcium induced reversible alterations in excitation-contraction coupling in verapamil treated rat myocardium.
    Capasso JM
    J Mol Cell Cardiol; 1985 Mar; 17(3):275-83. PubMed ID: 3837826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related differences in excitation-contraction coupling in rat papillary muscle.
    Capasso JM; Remily RM; Sonnenblick EH
    Basic Res Cardiol; 1983; 78(5):492-504. PubMed ID: 6651738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of calcium channel blocker treatment on the mechanical properties of diabetic rat myocardium.
    Brown RA; Lee MM; Sundareson AM; Woodbury DJ; Savage AO
    Acta Diabetol; 1996 Mar; 33(1):7-14. PubMed ID: 8777289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible alterations in excitation-contraction coupling during myocardial hypertrophy in rat papillary muscle.
    Capasso JM; Aronson RS; Sonnenblick EH
    Circ Res; 1982 Aug; 51(2):189-95. PubMed ID: 6212159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in the force-frequency relationship by tert-butylbenzohydroquinone, a putative SR Ca2+ pump inhibitor, in rabbit and rat ventricular muscle.
    Baudet S; Do E; Noireaud J; Le Marec H
    Br J Pharmacol; 1996 Jan; 117(2):258-67. PubMed ID: 8789377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic hypertension induces disparate localized left ventricular action potential lengthening and altered sensitivity to verapamil in left ventricular myocardium.
    Cameron JS; Miller LS; Kimura S; Kaiser CJ; Campbell DR; Kozlovskis PL; Gaide MS; Myerburg RJ; Bassett AL
    J Mol Cell Cardiol; 1986 Feb; 18(2):169-75. PubMed ID: 3959090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation-contraction in rat myocardium: alterations with adult aging.
    Wei JY; Spurgeon HA; Lakatta EG
    Am J Physiol; 1984 Jun; 246(6 Pt 2):H784-91. PubMed ID: 6742143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interrelationship of calcium-mediated action potentials and tension development in cat ventricular myocardium.
    Tritthart H; Volkmann R; Weiss R; Eibach H
    J Mol Cell Cardiol; 1976 Apr; 8(4):249-61. PubMed ID: 1271472
    [No Abstract]   [Full Text] [Related]  

  • 9. Epinephrine, cyclic AMP, calcium, and myocardial contractility.
    Williamson JR; Schaffer S
    Recent Adv Stud Cardiac Struct Metab; 1976; 9():205-23. PubMed ID: 176696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition by cocaine of excitation-contraction coupling in isolated cardiomyocytes.
    Stewart G; Rubin E; Thomas AP
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H50-7. PubMed ID: 1847017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of stimulation frequency responses and calcium dependency of functional parameters in hyperthyroid rat ventricular papillary muscles.
    Seppet EK; Eimre MA; Kallikorm AP
    Can J Physiol Pharmacol; 1990 Sep; 68(9):1214-20. PubMed ID: 2276084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles.
    Kotsias BA; Muchnik S; Obejero Paz CA
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C40-6. PubMed ID: 3942207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences in myocardial contractility in the rat.
    Capasso JM; Remily RM; Smith RH; Sonnenblick EH
    Basic Res Cardiol; 1983; 78(2):156-71. PubMed ID: 6870744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanisms of post-rest adaptation in the isolated electrically driven left atria of rats.
    Küçukhüseyin C; Oncel H; Silan C
    J Basic Clin Physiol Pharmacol; 2002; 13(4):263-88. PubMed ID: 12751897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitation of calcium blocking and membrane effects by intrinsic sympathomimetic activity.
    Smith HJ; Halliday SE; Briscoe MG; Snow HM
    Cardiovasc Res; 1984 Jan; 18(1):30-6. PubMed ID: 6141007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The differential effect of calcium antagonists on the positive inotropic effects induced by calcium and monensin in cardiac preparations of rats and guinea-pigs.
    Hugtenburg JG; Mathy MJ; Beckeringh JJ; van Zwieten PA
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Nov; 340(5):558-66. PubMed ID: 2615847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of halothane on transmembrane potentials, Ca2+ transients, and papillary muscle tension in the cat.
    Bosnjak ZJ; Kampine JP
    Am J Physiol; 1986 Aug; 251(2 Pt 2):H374-81. PubMed ID: 3740291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Sep; 469():583-99. PubMed ID: 8271217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium. I. Pattern of inotropic effects of the racemic compounds.
    Bayer R; Hennekes R; Kaufmann R; Mannhold R
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 290(1):49-68. PubMed ID: 1178069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative effects of gallopamil and verapamil on the mechanical and electrophysiological parameters of isolated guinea-pig myocardium.
    Noguchi K; Masumiya H; Takahashi K; Kaneko K; Higuchi S; Tanaka H; Shigenobu K
    Can J Physiol Pharmacol; 1997 Dec; 75(12):1316-21. PubMed ID: 9534940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.