BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38378819)

  • 41. Disproportionate loss of excitatory inputs to smaller phrenic motor neurons following cervical spinal hemisection.
    Rana S; Zhan WZ; Mantilla CB; Sieck GC
    J Physiol; 2020 Oct; 598(20):4693-4711. PubMed ID: 32735344
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reticulospinal and reticuloreticular pathways for activating the lumbar back muscles in the rat.
    Robbins A; Pfaff DW; Schwartz-Giblin S
    Exp Brain Res; 1992; 92(1):46-58. PubMed ID: 1486954
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Medullary reticulospinal tract mediating the generalized motor inhibition in cats: II. Functional organization within the medullary reticular formation with respect to postsynaptic inhibition of forelimb and hindlimb motoneurons.
    Habaguchi T; Takakusaki K; Saitoh K; Sugimoto J; Sakamoto T
    Neuroscience; 2002; 113(1):65-77. PubMed ID: 12123685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brainstem reticulospinal neurons are targets for corticotropin-releasing factor-Induced locomotion in roughskin newts.
    Hubbard CS; Dolence EK; Rose JD
    Horm Behav; 2010 Feb; 57(2):237-46. PubMed ID: 19968991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Funicular organization of avian brainstem-spinal projections.
    Webster DM; Steeves JD
    J Comp Neurol; 1991 Oct; 312(3):467-76. PubMed ID: 1748742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thoracic Hemisection in Rats Results in Initial Recovery Followed by a Late Decrement in Locomotor Movements, with Changes in Coordination Correlated with Serotonergic Innervation of the Ventral Horn.
    Leszczyńska AN; Majczyński H; Wilczyński GM; Sławińska U; Cabaj AM
    PLoS One; 2015; 10(11):e0143602. PubMed ID: 26606275
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord.
    Liang H; Watson C; Paxinos G
    Brain Struct Funct; 2016 Apr; 221(3):1623-33. PubMed ID: 25633472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reticulospinal Systems for Tuning Motor Commands.
    Brownstone RM; Chopek JW
    Front Neural Circuits; 2018; 12():30. PubMed ID: 29720934
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Descending Command Neurons in the Brainstem that Halt Locomotion.
    Bouvier J; Caggiano V; Leiras R; Caldeira V; Bellardita C; Balueva K; Fuchs A; Kiehn O
    Cell; 2015 Nov; 163(5):1191-1203. PubMed ID: 26590422
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activity of reticulospinal neurons during locomotion in the freely behaving lamprey.
    Deliagina TG; Zelenin PV; Fagerstedt P; Grillner S; Orlovsky GN
    J Neurophysiol; 2000 Feb; 83(2):853-63. PubMed ID: 10669499
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla.
    Perkins E; Warren S; May PJ
    Anat Rec (Hoboken); 2009 Aug; 292(8):1162-81. PubMed ID: 19645020
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduced functional recovery by delaying motor training after spinal cord injury.
    Norrie BA; Nevett-Duchcherer JM; Gorassini MA
    J Neurophysiol; 2005 Jul; 94(1):255-64. PubMed ID: 15985696
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reorganization of Intact Descending Motor Circuits to Replace Lost Connections After Injury.
    Fink KL; Cafferty WB
    Neurotherapeutics; 2016 Apr; 13(2):370-81. PubMed ID: 26846379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons.
    Usseglio G; Gatier E; Heuzé A; Hérent C; Bouvier J
    Curr Biol; 2020 Dec; 30(23):4665-4681.e6. PubMed ID: 33007251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monosynaptic projections from the medullary gigantocellular reticular formation to sympathetic preganglionic neurons in the thoracic spinal cord.
    Aicher SA; Reis DJ; Nicolae R; Milner TA
    J Comp Neurol; 1995 Dec; 363(4):563-580. PubMed ID: 8847418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors.
    Fouad K; Rank MM; Vavrek R; Murray KC; Sanelli L; Bennett DJ
    J Neurophysiol; 2010 Dec; 104(6):2975-84. PubMed ID: 20861436
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Classification of Neurons in the Primate Reticular Formation and Changes after Recovery from Pyramidal Tract Lesion.
    Zaaimi B; Soteropoulos DS; Fisher KM; Riddle CN; Baker SN
    J Neurosci; 2018 Jul; 38(27):6190-6206. PubMed ID: 29793974
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bilateral bulbospinal projections to pudendal motoneuron circuitry after chronic spinal cord hemisection injury as revealed by transsynaptic tracing with pseudorabies virus.
    Johnson RD; Chadha HK; Dugan VP; Gupta DS; Ferrero SL; Hubscher CH
    J Neurotrauma; 2011 Apr; 28(4):595-605. PubMed ID: 21265606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The mesencephalic locomotor region. II. Projections to reticulospinal neurons.
    Garcia-Rill E; Skinner RD
    Brain Res; 1987 May; 411(1):13-20. PubMed ID: 3607422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.