BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38378819)

  • 61. Neurons labeled from locomotor-related ventrolateral funiculus stimulus sites in the neonatal rat spinal cord.
    Antonino-Green DM; Cheng J; Magnuson DS
    J Comp Neurol; 2002 Jan; 442(3):226-38. PubMed ID: 11774338
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Matrix metalloproteinase-2 facilitates wound healing events that promote functional recovery after spinal cord injury.
    Hsu JY; McKeon R; Goussev S; Werb Z; Lee JU; Trivedi A; Noble-Haeusslein LJ
    J Neurosci; 2006 Sep; 26(39):9841-50. PubMed ID: 17005848
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recovery of locomotor function after hemisection of the spinal cord in cats.
    Eidelberg E; Nguyen LH; Deza LD
    Brain Res Bull; 1986 Apr; 16(4):507-15. PubMed ID: 3719381
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations.
    McClellan AD
    J Neurophysiol; 1994 Aug; 72(2):847-60. PubMed ID: 7983540
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Extensive Cortical Convergence to Primate Reticulospinal Pathways.
    Fisher KM; Zaaimi B; Edgley SA; Baker SN
    J Neurosci; 2021 Feb; 41(5):1005-1018. PubMed ID: 33268548
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats.
    Martinez M; Delivet-Mongrain H; Rossignol S
    J Neurophysiol; 2013 Jun; 109(12):2909-22. PubMed ID: 23554433
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Frequency response of medullary reticulospinal neurons to sinusoidal rotation of the neck.
    Srivastava UC; Manzoni D; Pompeiano O; Stampacchia G
    Adv Otorhinolaryngol; 1983; 30():302-5. PubMed ID: 12325211
    [No Abstract]   [Full Text] [Related]  

  • 69. Regulation of axonal regeneration following spinal cord injury in the lamprey.
    Benes JA; House KN; Burks FN; Conaway KP; Julien DP; Donley JP; Iyamu MA; McClellan AD
    J Neurophysiol; 2017 Sep; 118(3):1439-1456. PubMed ID: 28469003
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming.
    Kimura Y; Satou C; Fujioka S; Shoji W; Umeda K; Ishizuka T; Yawo H; Higashijima S
    Curr Biol; 2013 May; 23(10):843-9. PubMed ID: 23623549
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reticulospinal neurons receive direct spinobulbar inputs during locomotor activity in lamprey.
    Einum JF; Buchanan JT
    J Neurophysiol; 2004 Sep; 92(3):1384-90. PubMed ID: 15331645
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.
    Boulland JL; Lambert FM; Züchner M; Ström S; Glover JC
    PLoS One; 2013; 8(8):e71701. PubMed ID: 23990976
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Frequency response of medullary reticulospinal neurons to natural stimulation of labyrinth receptors.
    Manzoni D; Pompeiano O; Stampacchia G; Srivastava UC
    Adv Otorhinolaryngol; 1983; 30():298-301. PubMed ID: 12325209
    [No Abstract]   [Full Text] [Related]  

  • 75. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
    Jordan LM; McVagh JR; Noga BR; Cabaj AM; Majczyński H; Sławińska U; Provencher J; Leblond H; Rossignol S
    Front Neural Circuits; 2014; 8():132. PubMed ID: 25414645
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neuromechanical Strategies for Obstacle Negotiation during Overground Locomotion following Incomplete Spinal Cord Injury in Adult Cats.
    Lecomte CG; Mari S; Audet J; Yassine S; Merlet AN; Morency C; Harnie J; Beaulieu C; Gendron L; Frigon A
    J Neurosci; 2023 Aug; 43(31):5623-5641. PubMed ID: 37474307
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Arrangement of neurons in the medullary reticular formation and raphe nuclei projecting to thoracic, lumbar and sacral segments of the spinal cord in the cat.
    Kausz M
    Anat Embryol (Berl); 1991; 183(2):151-63. PubMed ID: 2035851
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Distribution of cholinergic, GABAergic and serotonergic neurons in the medial medullary reticular formation and their projections studied by cytotoxic lesions in the cat.
    Holmes CJ; Mainville LS; Jones BE
    Neuroscience; 1994 Oct; 62(4):1155-78. PubMed ID: 7845592
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Recovery of hindlimb locomotion after incomplete spinal cord injury in the cat involves spontaneous compensatory changes within the spinal locomotor circuitry.
    Martinez M; Delivet-Mongrain H; Leblond H; Rossignol S
    J Neurophysiol; 2011 Oct; 106(4):1969-84. PubMed ID: 21775717
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey.
    Ohta Y; Grillner S
    J Neurophysiol; 1989 Nov; 62(5):1079-89. PubMed ID: 2555456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.