These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38378845)

  • 1. Machine learning enhanced evaluation of semiconductor quantum dots.
    Corcione E; Jakob F; Wagner L; Joos R; Bisquerra A; Schmidt M; Wieck AD; Ludwig A; Jetter M; Portalupi SL; Michler P; Tarín C
    Sci Rep; 2024 Feb; 14(1):4154. PubMed ID: 38378845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication.
    Liu J; Konthasinghe K; Davanco M; Lawall J; Anant V; Verma V; Mirin R; Woo Nam S; Dong Song J; Ma B; Sheng Chen Z; Qiao Ni H; Chuan Niu Z; Srinivasan K
    Phys Rev Appl; 2018; 9():. PubMed ID: 30984800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability.
    Schöll E; Hanschke L; Schweickert L; Zeuner KD; Reindl M; Covre da Silva SF; Lettner T; Trotta R; Finley JJ; Müller K; Rastelli A; Zwiller V; Jöns KD
    Nano Lett; 2019 Apr; 19(4):2404-2410. PubMed ID: 30862165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.
    Chen Y; Zhang J; Zopf M; Jung K; Zhang Y; Keil R; Ding F; Schmidt OG
    Nat Commun; 2016 Jan; 7():10387. PubMed ID: 26813326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Polarization-Entangled Photons from Self-Assembled Quantum Dots in a Hybrid Quantum Photonic Chip.
    Jin T; Li X; Liu R; Ou W; Zhu Y; Wang X; Liu J; Huo Y; Ou X; Zhang J
    Nano Lett; 2022 Jan; 22(2):586-593. PubMed ID: 35025517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Generation of Entangled Photon Pairs in the Telecom C-Band with InAs Quantum Dots.
    Zeuner KD; Jöns KD; Schweickert L; Reuterskiöld Hedlund C; Nuñez Lobato C; Lettner T; Wang K; Gyger S; Schöll E; Steinhauer S; Hammar M; Zwiller V
    ACS Photonics; 2021 Aug; 8(8):2337-2344. PubMed ID: 34476289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.
    Huber D; Reindl M; Huo Y; Huang H; Wildmann JS; Schmidt OG; Rastelli A; Trotta R
    Nat Commun; 2017 May; 8():15506. PubMed ID: 28548081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy.
    Basso Basset F; Bietti S; Reindl M; Esposito L; Fedorov A; Huber D; Rastelli A; Bonera E; Trotta R; Sanguinetti S
    Nano Lett; 2018 Jan; 18(1):505-512. PubMed ID: 29239186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices.
    Gurioli M; Wang Z; Rastelli A; Kuroda T; Sanguinetti S
    Nat Mater; 2019 Aug; 18(8):799-810. PubMed ID: 31086322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-Tunable GaAs Quantum Dot: A Nearly Dephasing-Free Source of Entangled Photon Pairs on Demand.
    Huber D; Reindl M; Covre da Silva SF; Schimpf C; Martín-Sánchez J; Huang H; Piredda G; Edlinger J; Rastelli A; Trotta R
    Phys Rev Lett; 2018 Jul; 121(3):033902. PubMed ID: 30085806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot.
    Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME
    Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain-Controlled Quantum Dot Fine Structure for Entangled Photon Generation at 1550 nm.
    Lettner T; Gyger S; Zeuner KD; Schweickert L; Steinhauer S; Reuterskiöld Hedlund C; Stroj S; Rastelli A; Hammar M; Trotta R; Jöns KD; Zwiller V
    Nano Lett; 2021 Dec; 21(24):10501-10506. PubMed ID: 34894699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of strongly entangled photon pairs from a nanowire quantum dot.
    Versteegh MA; Reimer ME; Jöns KD; Dalacu D; Poole PJ; Gulinatti A; Giudice A; Zwiller V
    Nat Commun; 2014 Oct; 5():5298. PubMed ID: 25358656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-electron charge sensing in self-assembled quantum dots.
    Kiyama H; Korsch A; Nagai N; Kanai Y; Matsumoto K; Hirakawa K; Oiwa A
    Sci Rep; 2018 Sep; 8(1):13188. PubMed ID: 30228339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement Swapping with Photons Generated on Demand by a Quantum Dot.
    Basso Basset F; Rota MB; Schimpf C; Tedeschi D; Zeuner KD; Covre da Silva SF; Reindl M; Zwiller V; Jöns KD; Rastelli A; Trotta R
    Phys Rev Lett; 2019 Oct; 123(16):160501. PubMed ID: 31702339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna.
    Rakhlin M; Klimko G; Sorokin S; Kulagina M; Zadiranov Y; Kazanov D; Shubina T; Ivanov S; Toropov A
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum key distribution with entangled photons generated on demand by a quantum dot.
    Basso Basset F; Valeri M; Roccia E; Muredda V; Poderini D; Neuwirth J; Spagnolo N; Rota MB; Carvacho G; Sciarrino F; Trotta R
    Sci Adv; 2021 Mar; 7(12):. PubMed ID: 33741595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting single photons from an InAs/GaAs quantum dot into the ultraviolet: preservation of second-order correlations.
    Hamer A; Fricker D; Hohn M; Atkinson P; Lepsa M; Linden S; Vewinger F; Kardynal B; Stellmer S
    Opt Lett; 2022 Apr; 47(7):1778-1781. PubMed ID: 35363733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.
    Sapienza L; Liu J; Song JD; Fält S; Wegscheider W; Badolato A; Srinivasan K
    Sci Rep; 2017 Jul; 7(1):6205. PubMed ID: 28740160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards Scalable Entangled Photon Sources with Self-Assembled InAs/GaAs Quantum Dots.
    Wang J; Gong M; Guo GC; He L
    Phys Rev Lett; 2015 Aug; 115(6):067401. PubMed ID: 26296130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.