These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38378978)
1. New generative methods for single-cell transcriptome data in bulk RNA sequence deconvolution. Nishikawa T; Lee M; Amau M Sci Rep; 2024 Feb; 14(1):4156. PubMed ID: 38378978 [TBL] [Abstract][Full Text] [Related]
3. MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data. Fan J; Lyu Y; Zhang Q; Wang X; Li M; Xiao R Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36208175 [TBL] [Abstract][Full Text] [Related]
4. Effective methods for bulk RNA-seq deconvolution using scnRNA-seq transcriptomes. Cobos FA; Panah MJN; Epps J; Long X; Man TK; Chiu HS; Chomsky E; Kiner E; Krueger MJ; di Bernardo D; Voloch L; Molenaar J; van Hooff SR; Westermann F; Jansky S; Redell ML; Mestdagh P; Sumazin P Genome Biol; 2023 Aug; 24(1):177. PubMed ID: 37528411 [TBL] [Abstract][Full Text] [Related]
5. Deconvolution from bulk gene expression by leveraging sample-wise and gene-wise similarities and single-cell RNA-Seq data. Wang C; Lin Y; Li S; Guan J BMC Genomics; 2024 Sep; 25(1):875. PubMed ID: 39294558 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Avila Cobos F; Alquicira-Hernandez J; Powell JE; Mestdagh P; De Preter K Nat Commun; 2020 Nov; 11(1):5650. PubMed ID: 33159064 [TBL] [Abstract][Full Text] [Related]
7. Likelihood-based deconvolution of bulk gene expression data using single-cell references. Erdmann-Pham DD; Fischer J; Hong J; Song YS Genome Res; 2021 Oct; 31(10):1794-1806. PubMed ID: 34301624 [TBL] [Abstract][Full Text] [Related]
8. Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference. Luo Y; Fan R Genet Epidemiol; 2022 Dec; 46(8):615-628. PubMed ID: 35788983 [TBL] [Abstract][Full Text] [Related]
9. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics. Sang-Aram C; Browaeys R; Seurinck R; Saeys Y Elife; 2024 May; 12():. PubMed ID: 38787371 [TBL] [Abstract][Full Text] [Related]
10. DURIAN: an integrative deconvolution and imputation method for robust signaling analysis of single-cell transcriptomics data. Karikomi M; Zhou P; Nie Q Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35709795 [TBL] [Abstract][Full Text] [Related]
11. HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD). Chiu YJ; Ni CE; Huang YH BMC Med Genomics; 2023 Oct; 16(Suppl 2):272. PubMed ID: 37907883 [TBL] [Abstract][Full Text] [Related]
12. A novel Bayesian framework for harmonizing information across tissues and studies to increase cell type deconvolution accuracy. Deng W; Li B; Wang J; Jiang W; Yan X; Li N; Vukmirovic M; Kaminski N; Wang J; Zhao H Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631398 [TBL] [Abstract][Full Text] [Related]
13. Dataset including whole blood gene expression profiles and matched leukocyte counts with utility for benchmarking cellular deconvolution pipelines. O'Connell GC BMC Genom Data; 2024 May; 25(1):45. PubMed ID: 38714942 [TBL] [Abstract][Full Text] [Related]
14. Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data. Andrade Barbosa B; van Asten SD; Oh JW; Farina-Sarasqueta A; Verheij J; Dijk F; van Laarhoven HWM; Ylstra B; Garcia Vallejo JJ; van de Wiel MA; Kim Y Nat Commun; 2021 Oct; 12(1):6106. PubMed ID: 34671028 [TBL] [Abstract][Full Text] [Related]
15. Robust and accurate estimation of cellular fraction from tissue omics data via ensemble deconvolution. Cai M; Yue M; Chen T; Liu J; Forno E; Lu X; Billiar T; Celedón J; McKennan C; Chen W; Wang J Bioinformatics; 2022 May; 38(11):3004-3010. PubMed ID: 35438146 [TBL] [Abstract][Full Text] [Related]
16. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets. Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneous pseudobulk simulation enables realistic benchmarking of cell-type deconvolution methods. Hu M; Chikina M Genome Biol; 2024 Jul; 25(1):169. PubMed ID: 38956606 [TBL] [Abstract][Full Text] [Related]
18. NNICE: a deep quantile neural network algorithm for expression deconvolution. Jin YW; Hu P; Liu Q Sci Rep; 2024 Jun; 14(1):14040. PubMed ID: 38890415 [TBL] [Abstract][Full Text] [Related]
19. Bulk tissue cell type deconvolution with multi-subject single-cell expression reference. Wang X; Park J; Susztak K; Zhang NR; Li M Nat Commun; 2019 Jan; 10(1):380. PubMed ID: 30670690 [TBL] [Abstract][Full Text] [Related]
20. Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data. Dai R; Chu T; Zhang M; Wang X; Jourdon A; Wu F; Mariani J; Vaccarino FM; Lee D; Fullard JF; Hoffman GE; Roussos P; Wang Y; Wang X; Pinto D; Wang SH; Zhang C; ; Chen C; Liu C Sci Adv; 2024 May; 10(21):eadh2588. PubMed ID: 38781336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]