These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38379303)
1. Improving the Three-Dimensional Printability of Potato Starch Loaded onto Food Ink. Oh Y; Lee S; Lee NK; Rhee JK J Microbiol Biotechnol; 2024 Apr; 34(4):891-901. PubMed ID: 38379303 [TBL] [Abstract][Full Text] [Related]
2. Combined effect of heating temperature and content of pectin on the textural properties, rheology, and 3D printability of potato starch gel. Wedamulla NE; Fan M; Choi YJ; Kim EK Int J Biol Macromol; 2023 Dec; 253(Pt 5):127129. PubMed ID: 37778578 [TBL] [Abstract][Full Text] [Related]
3. Potato starch altered the rheological, printing, and melting properties of 3D-printable fat analogs based on inulin emulsion-filled gels. Wen Y; Che QT; Kim HW; Park HJ Carbohydr Polym; 2021 Oct; 269():118285. PubMed ID: 34294311 [TBL] [Abstract][Full Text] [Related]
4. Citrus peel powder alters the rheological properties and 3D printing performance of potato starch gel. Wedamulla NE; Choi YJ; Zhang Q; Kim SH; Kang H; Kim EK Int J Biol Macromol; 2024 Nov; 279(Pt 1):135229. PubMed ID: 39299893 [TBL] [Abstract][Full Text] [Related]
5. Effect of twin-screw extrusion pretreatment on starch structure, rheological properties and 3D printing accuracy of whole potato flour and its application in dysphagia diets. Wang Y; Zhao R; Liu W; Zhao R; Liu Q; Hu H Int J Biol Macromol; 2024 Oct; 278(Pt 3):134796. PubMed ID: 39217039 [TBL] [Abstract][Full Text] [Related]
6. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Lu Y; Rai R; Nitin N Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721 [TBL] [Abstract][Full Text] [Related]
7. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
8. Starch as edible ink in 3D printing for food applications: a review. Chen Y; McClements DJ; Peng X; Chen L; Xu Z; Meng M; Zhou X; Zhao J; Jin Z Crit Rev Food Sci Nutr; 2024; 64(2):456-471. PubMed ID: 35997260 [TBL] [Abstract][Full Text] [Related]
9. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
10. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611 [TBL] [Abstract][Full Text] [Related]
11. Undaria pinnatifida gel inks for food 3D printing are developed based on the colloidal properties of Undaria pinnatifida slurry and protein/colloidal/starch substances. Sun Y; Huang X; Guo S; Wang Y; Feng D; Dong X; Qi H Int J Biol Macromol; 2024 Mar; 261(Pt 1):129788. PubMed ID: 38290637 [TBL] [Abstract][Full Text] [Related]
12. Advancements in 3D food printing: a comprehensive overview of properties and opportunities. Zhang JY; Pandya JK; McClements DJ; Lu J; Kinchla AJ Crit Rev Food Sci Nutr; 2022; 62(17):4752-4768. PubMed ID: 33533641 [TBL] [Abstract][Full Text] [Related]
13. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. An YJ; Guo CF; Zhang M; Zhong ZP J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991 [TBL] [Abstract][Full Text] [Related]
14. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks. Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy. Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448 [TBL] [Abstract][Full Text] [Related]
16. Dry heating treatment: A potential tool to improve the wheat starch properties for 3D food printing application. Maniglia BC; Lima DC; da Matta Júnior M; Oge A; Le-Bail P; Augusto PED; Le-Bail A Food Res Int; 2020 Nov; 137():109731. PubMed ID: 33233299 [TBL] [Abstract][Full Text] [Related]
17. Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Trenfield SJ; Xian Tan H; Awad A; Buanz A; Gaisford S; Basit AW; Goyanes A Int J Pharm; 2019 Aug; 567():118443. PubMed ID: 31212052 [TBL] [Abstract][Full Text] [Related]
18. Recent trends of 3D printing based on starch-hydrocolloid in food, biomedicine and environment. Liu W; Chen L; McClements DJ; Peng X; Jin Z Crit Rev Food Sci Nutr; 2024; 64(25):8948-8962. PubMed ID: 37129300 [TBL] [Abstract][Full Text] [Related]
19. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing. Yoon HS; Yang K; Kim YM; Nam K; Roh YH Carbohydr Polym; 2021 Nov; 272():118469. PubMed ID: 34420728 [TBL] [Abstract][Full Text] [Related]
20. Novel strategy for optimizing of corn starch-based ink food 3D printing process: Printability prediction based on BP-ANN model. Jiao X; Ren G; Law CL; Li L; Cao W; Luo Z; Pan L; Duan X; Chen J; Liu W Int J Biol Macromol; 2024 Sep; 276(Pt 2):133921. PubMed ID: 39025175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]